- 水下目标检测:突破与创新
加油吧zkf
目标跟踪人工智能计算机视觉
水下目标检测技术背景水下环境带来独特挑战:光线衰减导致对比度降低,散射引发图像模糊,色偏使颜色失真。动态水流造成目标形变,小目标(如10×10像素海胆)检测困难。声呐与光学数据融合可提升精度,但多模态对齐仍是技术难点。核心算法实现要点图像预处理直方图均衡化与Retinex算法结合改善对比度和色偏:defsingle_scale_retinex(img,sigma):retinex=np.log10
- Midjourney:AI人工智能图像生成的新方向
AI智能探索者
人工智能midjourney计算机视觉ai
Midjourney:AI人工智能图像生成的新方向关键词:Midjourney、AI图像生成、扩散模型、提示词工程、多模态学习、生成式AI、创意工具摘要:本文将带您走进AI图像生成的前沿领域,以Midjourney为核心,从技术原理到实际应用,用通俗易懂的语言解析其背后的“魔法”。我们将通过生活案例、技术拆解和实战演示,揭示Midjourney如何通过扩散模型、提示词工程和多模态学习,重新定义“用
- 基于评估方法论评估一个大模型的准确度
尤物程序猿
自动化运维
评估标准先来说说什么是大模型的一个准确度,指其输出结果与真实值或期望值之间的符合程度,但在不同任务和场景下具体定义和评估方式存在显著差异。要评估一个大模型还得考虑到评估哪些方面呢?以下是大概的几个方向任务类型准确度定义分类任务预测类别与真实标签的一致性生成任务生成内容的真实性/流畅性/相关性问答任务答案的事实正确性和完整性多模态任务跨模态对齐能力(如图文匹配)除了以上几个方面还需要考虑表面匹配:字
- 【GitHub开源项目实战】Agent-Zero 多模态 Agent 框架的架构实现与实战落地
观熵
GitHub开源项目实战github开源架构
开源项目实战解析:Agent-Zero多模态Agent框架的架构实现与实战落地关键词:Agent-Zero、LLMAgent、多模态融合、LangGraph、结构化对话、函数调用、RAG、真实场景实战、开源项目分析摘要:Agent-Zero是一个以LangGraph为核心构建的多模态智能体框架,专注于大语言模型(LLMs)驱动下的多模态Agent系统实现,具备高度模块化、支持结构化对话状态流转、工
- PHP接单涨薪系列(八)之AI内容工厂:用PHP批量生成SEO文章系统(2025接单秘籍)
攻城狮凌霄
PHPPHP接单涨薪AI人工智能phpandroid
某SEO团队采用本方案后,内容产出效率提升10倍,网站流量3个月增长300%,单月通过内容外包获利超¥50,000。本文将揭秘如何用PHP+AI打造全自动SEO内容工厂,让你成为搜索引擎优化领域的抢手人才!一、SEO市场新机遇:AI内容生成的红利期1.12025年SEO行业巨变搜索引擎算法升级2025核心变革SGE体验优化EEAT权重提升多模态内容整合2025年SEO关键数据:指标20232025
- 百度文心一言4.5震撼发布:多模态大模型开源,4240亿参数,免费商用授权
在2025年7月1日,百度正式宣布开源文心4.5系列大模型。这不是一次普通的“模型权重公开”,而是百度给国产大模型行业交了一份“底座+生态+实战”的高质量答卷。文心4.5到底开源了什么?2025年7月1日,百度正式开源了其最新一代大模型——文心4.5系列。这次开源的并不是一个单一模型,而是一个完整的多模态MoE模型家族,包括::47B和3B的多模态MoE大模型,具备多模态感知和高性能通用推理能力多
- docker安装单机nacos、rocketmq、reids、xxl-job、minio、elasticsearch、kibana、gogs、nginx、mongo
丶会武术的流氓丶
dockerrocketmqrediselasticsearch
目录在右侧中部启动容器报错直接删除那个name后边的就可以安装nacos首先需要拉取对应的镜像文件:dockerpullnacos/nacos-server挂载目录:mkdir-p/mydata/nacos/logs/#新建logs目录mkdir-p/mydata/nacos/init.d/vim/mydata/nacos/init.d/custom.properties#修改配置文件修改cust
- 索引失效的7中情况
qq_35460875
数据库sqljava
1.列与列对比索引失效情况某两列都建立了单独索引,下面情况不会走索引select*fromtestwhereid=c_id2.列存在NULL值索引失效情况我们在涉及数据库表的时候,应该尽量避免NULL值出现如果避免不了,最好也要给一个default默认值默认值可以为0,-1字符串默认值可以用“空字符串”3.NOT条件索引失效情况where条件中以下情况都会导致索引失效500;select*from
- 百度文心大模型4.5开源风暴!API同步开放!
程序员辣条
产品经理langchain语言模型程序员人工智能大模型学习大模型
百度文心大模型开源,如期而至。就在今天,百度官宣文心大模型4.5系列正式开源,还同步提供API服务。此番,百度一次性推出10款开源模型,涵盖从47B参数的混合专家(MoE)模型到轻量级0.3B稠密型模型,覆盖文本、多模态等多种任务需求。此次开源不仅权重与代码完全开放,还同步提供API服务,开发者可通过飞桨星河社区、HuggingFace、百度智能云千帆平台直接下载使用。文心大模型4.5系列开源模型
- select高级——子查询
聪聪的学习笔记
数据可数据库sqlmysql
定义子查询是在一个查询的内部包括另一个查询的查询方式。简单子查询案例select*from`comment`wherecmtDate>(selectcmtDatefrom`comment`wherecmtAuthor='东东1')IN和NOTIN子查询IN案例查询名字中包含’东‘的作者评论过的所有新闻SELECT*FROMnewsWHEREidIN(SELECTnewsIdFROM`comment
- 价值的罗盘:AI对齐与人类文明的终极追问
田园Coder
人工智能科普人工智能科普
当大型语言模型(LLM)在文本生成、代码创作、多模态理解等领域展现出逼近甚至超越人类专家的惊人能力,当自主智能体(Agent)开始规划复杂目标、调用工具、影响现实世界,一个关乎人类文明存续的根本性问题,从未如此紧迫地摆在眼前:我们如何确保这些日益强大、甚至未来可能超越人类智慧的AI系统,其目标、行为和价值观始终与人类福祉深度契合?这便是AI对齐(AIAlignment)问题的核心。它并非单纯的技术
- 认知引擎的逻辑架构设计:从“投影”到“本体”的知识进化系统
将“投影—>本体”的认知机制延伸到多个领域,并从不同角度(认识论、科学方法、决策框架、元认知、知识演化)切入,给出一套框架。在这里将其统一为一个“认知引擎”的系统性架构,并加入多模态数据处理、不确定性处理、知识融合、动态演化、系统反馈与优化机制,使之成为一个能够自主学习、自我组织、自我演化的“知识宇宙探照灯”,最终目标是构建真正强大的“认知系统”以逼近“知识奇点”。认知引擎逻辑架构图以下是认知引擎
- 视觉表征和多模态融合
一只齐刘海的猫
语言模型
视觉表征和多模态融合是当前人工智能领域的研究热点,特别是在计算机视觉和自然语言处理的交叉领域。视觉表征是指将图像或视频信息转化为模型可以处理的向量形式,而多模态融合则是将不同类型的数据(如视觉、文本、音频等)进行整合,以实现更全面、准确的信息理解和处理。视觉表征(VisualRepresentation)目的:将图像或视频数据转化为深度学习模型可以理解的特征向量。方法:卷积神经网络(CNN):传
- 掌握Ollama框架:一站式教程,从环境搭建到高效开发
一名技术极客
人工智能人工智能ollama
掌握Ollama框架:一站式教程,从环境搭建到高效开发安装ollamamacOSWindows预览版LinuxDockerollama的库和工具ollama-pythonollama-js快速开始运行模型访问模型库自定义模型从GGUF导入模型自定义提示CLI参考创建模型拉取模型删除模型复制模型多行输入多模态模型提示作为参数传入RESTAPI生成响应与模型对话构建ollama安装依赖生成依赖构建二进
- Deepoc光电研发垂直大模型的技术实现突破与核心模块
Deepoch
无人机人工智能科技ai
一、模型架构与算法创新领域专用混合架构设计多模态Transformer扩展:在标准Transformer架构基础上,引入光子器件特性感知模块(如非线性光学参数编码器),支持光路拓扑结构与电磁场分布的联合建模,解决传统电芯片架构无法模拟光子干涉效应的难题。量子-光电混合计算层:通过量子线路模拟光子量子态演化,结合经典计算层优化参数搜索空间,实现NP难问题(如光子芯片布线优化)的指数级加速。物理约束的
- 目标检测在国防和政府的应用实例
MzKyle
计算机视觉目标检测人工智能计算机视觉
一、目标检测技术概述目标检测是计算机视觉的核心任务,通过算法对图像/视频中的物体进行识别与定位,当前主流技术包括:经典算法:YOLO系列(实时性强)、FasterR-CNN(精度高)、SSD(平衡速度与精度)技术升级:结合深度学习(CNN、Transformer)、多模态融合(视觉+红外+雷达)、边缘计算实时处理二、国防领域核心应用实例(一)军事侦察与监控系统无人机侦察与目标识别应用场景:战术无人
- 绕过SQL注入监测的技术
绕过SQL注入监测的技术SQL注入监测通常通过WAF(Web应用防火墙)、IDS/IPS或应用层检测机制实现:1.编码混淆技术十六进制编码:SELECT*FROMusersWHEREid=0x31OR1=1URL编码:id=1%20OR%201%3D1Unicode编码:id=1+OR+1=1→id=1+%u004F%u0052+%u0031%u003D%u00312.注释混淆内联注释(MySQL
- VLA模型
一介绍在机器人领域,视觉-语言-动作(VLA)模型的发展经历了显著的演变,这得益于计算机视觉和自然语言处理领域的进步。VLA模型代表了一类旨在处理多模态输入的模型,整合了来自视觉、语言和动作的信息。这些模型对于实现具身智能至关重要,使机器人能够理解物理世界并与之互动。以下是VLA模型发展的时间线:早期阶段:计算机视觉和自然语言处理的集成大约在2015年开始,随着视觉问答(VQA)系统的出现。这些系
- 【读代码】PDF-Extract-Kit深度解析:最好用的RAG开源PDF解析工具
kakaZhui
pdfAIGC大模型RAGAgentDeepSeek
一、基本介绍PDF-Extract-Kit是由OpenDataLab推出的开源工具包,专注于解决复杂PDF文档的内容解析难题。该项目集成了当前最先进的文档解析模型,通过模块化设计实现灵活的功能组合,支持布局检测、公式识别、表格解析等多项核心功能。其最大特点在于:多模态解析能力:支持文字、公式、表格、图像等元素的联合解析工业级鲁棒性:在模糊扫描件、水印文档等复杂场景下仍保持高准确率开箱即用体验:提供
- AI大模型定义与应用概述
水云桐程序员
人工智能ai大模型
AI大模型,也成为基础模型或大规模预训练模型,指的是在海量数据上通过深度学习技术进行预训练的超大型人工智能模型。常见类型大型语言模型:这是目前最主流和成熟的大模型类型。擅长文本生成、文本理解、机器翻译、对话系统、代码生成与解释等。代表案例:GPT系列、通义千问、文心一言、KimiChat等。多模态大模型:擅长同时处理和生成多种模态的信息,如文生图、图生文、图文问答、视频理解、音频生成等。代表案例:
- 文献阅读篇#8:YOLO如何实现多模态
hjs_deeplearning
YOLO人工智能深度学习目标检测多模态模态融合
一、引言YOLO众所周知是一个目标检测、跟踪、计数等等的视觉模型,对于YOLO来说,它的核心功能还是分类,识别出物体的类别并辅助以计数、跟踪等等功能。但是,光使用一个YOLO模型进行目标检测只能提取一张图片的特征,或者只能通过一条路去提取特征,最终输出结果。而前面提到的多模态,则会引入另一个维度的特征。例如二区Top期刊《Underwateracousticintelligentspectrums
- Day44
1.预训练概念:在大规模数据上训练模型学习通用知识,再迁移到下游任务微调2.常见模型:图像有AlexNet、ResNet、ViT;NLP有BERT、GPT3.图像模型发展:从手工特征到深度学习,从CNN到Transformer、多模态4.预训练策略:数据增强、自监督/监督训练、模型微调、多模态学习作业1.importtorchimporttorch.nnasnnimporttorch.optima
- LLaVA-1.5:强大的多模态大模型(包含论文代码详解)
Sherlock Ma
AIGC多模态大模型pythonaiAIGC人工智能深度学习
1.概述LLaVA是一个由威斯康星大学麦迪逊分校、微软研究院和哥伦比亚大学的研究人员开发的大型语言和视觉助手。它是一个端到端训练的大型多模态模型,结合了视觉编码器和语言模型,用于通用的视觉和语言理解。微软研究院、威斯康星大学的研究人员在LLaVA基础之上,继续开源了LLaVA-1.5版本。与前一代相比,LLaVA-1.5引入了跨模态连接器和特定格式的学术视觉问答数据集,全面提升了多模态理解和生成能
- 中文语境下的视频生成革命:百度 MuseSteamer 的“产品级落地”启示录
在美的苦命程序员
百度人工智能
在大模型发展逐步迈入多模态融合的时代,生成式视频(AIGCVideo)无疑被视为AI应用皇冠上的明珠。尤其在Sora带动“秒出大片”浪潮之后,行业期待的是下一阶段的拐点——技术从“能生成”迈向“能使用”。7月初,百度推出了MuseSteamer视频生成模型及其配套平台“绘想”,在喧嚣的AI视频赛道中选择了极其务实的一条路——场景定制化,并将这一策略高度产品化执行,体现出国内大厂在“AI商用路径”上
- AIGC领域MCP模型上下文协议:推动行业数字化转型的新引擎
SuperAGI2025
AI大模型应用开发宝典AIGCai
AIGC领域MCP模型上下文协议:推动行业数字化转型的新引擎关键词:AIGC、MCP模型、上下文协议、数字化转型、人工智能、内容生成、语义理解摘要:本文深入探讨AIGC(人工智能生成内容)领域的MCP(多模态上下文感知)模型及其上下文协议,揭示其如何成为推动行业数字化转型的新引擎。我们将从基础概念出发,逐步解析MCP模型的技术原理、实现方法和应用场景,并通过实际案例展示其在各行业的创新应用。文章还
- 多模态AI Agent技术栈解析:视觉-语言-决策融合的算法原理与实践
多模态AIAgent技术栈解析:视觉-语言-决策融合的算法原理与实践嗨,我是IRpickstars!总有一行代码,能点亮万千星辰。在技术的宇宙中,我愿做永不停歇的探索者。✨用代码丈量世界,用算法解码未来。我是摘星人,也是造梦者。每一次编译都是新的征程,每一个bug都是未解的谜题。让我们携手,在0和1的星河中,书写属于开发者的浪漫诗篇。目录编辑多模态AIAgent技术栈解析:视觉-语言-决策融合的算
- BAAI/BGE-VL多模态模型部署、原理、代码详解(实现图像文本混合检索),包含BEG-VL多模态模型的本地部署详细步骤及代码原理解析
令令小宁
python语言模型自然语言处理nlp人工智能
本文包含BGE-VL多模态模型的本地部署详细步骤及代码原理解析文章目录前言一、模型下载二、计算流程解析1.BGE-VL-base/Large2.BGE-VL-MLLM-s1/s2三、总结前言提示:这里可以添加本文要记录的大概内容:包含四个模型及数据集,数据集未开源,四个模型可以分别下载:其中,BGE-VL-base/Large是基于CLIP训练的模型,BGE-VL-MLLM-S1/S2是基于LLM
- 本地部署Jina-CLIP v2:多语言多模态文本图像向量模型(包含一些踩坑记录和技巧)
令令小宁
jina语言模型python
JinaCLIPv2:Jina-CLIP-v2是一个全新的通用多语言多模态向量模型,该模型基于jina-clip-v1和jina-embeddings-3构建,实现了一些关键改进。关于Jina-CLIP-v2的更多介绍点此可了解模型特点模型开源链接:https://huggingface.co/jinaai/jina-clip-v2在它的开源链接的介绍中,我们可以得知,Jina-CLIP-v2的参
- 【Agent实战】用“前置编码器+LLM”复刻ChatGPT附件功能
kakaZhui
大模型Agent入门与代码实战chatgpt人工智能LLMAgentAIGCDeepSeek
1.引言:多模态LLM解耦原生多模态LLM将多种模态的处理能力“内化”于一个庞大的模型中,是技术的前沿。而我们这里讨论的“前置编码器+LLM”方案,则是一种解耦的设计哲学:LLM专注于语言:让强大的文本LLM继续做它最擅长的事情——理解和生成高质量的文本、进行逻辑推理和遵循复杂指令。前置编码器专注于转换:为每种文件类型构建或调用专门的、最优的工具(模型或库)来将其转换为高质量的文本表示。这种方案的
- Gemini 2.5 Pro API恢复免费,每分钟5次、25万tokens及每日100次请求的免费额度
Gemini2.5ProAPI近期宣布恢复免费服务,为开发者提供了更具吸引力的使用条件。根据最新信息,免费层级的API限制为每分钟5次请求、每日100次请求,以及25万tokens的额度。这一免费政策的变化体现了谷歌对该模型的推广策略调整。Gemini2.5Pro作为谷歌的旗舰AI模型,在多模态处理、推理能力和长上下文窗口等方面具有显著优势。其API定价在付费层级为输入每百万token1.25美元
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,