R两两之间展示pearson图

把之前的巩固和前进一些:

args<-commandArgs(T)
dat<-read.table(args[1],header = T, sep="\t",row.names=1)
for(i in 1:(ncol(dat)-1))
{
	for(j in (i+1):ncol(dat))
	{
		a = as.numeric(dat[,i])
		b = as.numeric(dat[,j])
		c = a + b
		a = a[c>0]
		b = b[c>0]
		cor <- round(cor(a, b, method = "pearson"), 4)
		x <- sub('_[0-9]$', '', colnames(dat[i]))
		y <- sub('_[0-9]$', '', colnames(dat[j]))
		fp <- paste(args[2],"/", x,"_vs_", y, ".pearson.pdf", sep = "")
		pdf(file=fp)
		plot(a, b, log = "xy", xlab=paste("FPKM of ",x,sep=""),ylab=paste("FPKM of ",y,sep=""),col=rgb(255,0,0,max=255,alpha=100), pch=20, cex=0.5)
		legend("topleft", legend = paste("Pearson correlation: ",cor,sep=""), col =rgb(255,0,0,max=255,alpha=255), pch=20)
		dev.off()
	}
}


你可能感兴趣的:(生物信息学)