15.python环境搭建
16.Eclipse搭建python环境
安装Eclipse,安装JDK。
安装PyDev模块(帮助-安装新软件),配置Python环境(窗口-首选项)。
17.动手完成简单神经网络
完成3层的神经网络。
import numpy as np
def sigmoid(x, deriv = False):
if (deriv == True):
return x*(1-x)
return 1/(1+np.exp(-x))
# data
x = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1],
[0,0,1]]
)
#查看数据维度,可知有5个样本,每个样本有3点特征
print (x.shape) #(5,3)
# label
y = np.array([[0],
[1],
[1],
[0],
[0]]
)
print (y.shape) #(5,1)
np.random.seed(1)
# 定义3层神经网络,要明确权值w的大小
w0 = 2*np.random.random((3,4)) -1 #w0前连3个特征,后连4个神经元
w1 = 2*np.random.random((4,1)) -1 #w1前连4个神经元,后连1个神经元(只有一个输出值(0||1))
print (w0) #2*x-1后可见,值[-1,+1]
# 进行神经网络的构造以及迭代计算
# python 2.7 xrange
# python 3 range
for j in range(60000):
# 前向传播
l0 = x
l1 = sigmoid(np.dot(l0,w0))
l2 = sigmoid(np.dot(l1,w1)) #预测结果
# 将预测结果与真实值y进行比较,loss的构造
l2_error = y - l2
if (j%10000) == 0:
print('Error'+ str(np.mean(np.abs(l2_error))))
#进行反向传播的求导操作,l2_error相当于权重系数
l2_delta = l2_error * sigmoid(l2,deriv = True)
l1_error = l2_delta.dot(w1.T)
l1_delta = l1_error * sigmoid(l1,deriv = True)
# 权值更新
w1 += l1.T.dot(l2_delta) #不光要把上一层的错误传下来,还要算自身的梯度。
w0 += l0.T.dot(l1_delta)
18.感受神经网络的强大
对比神经网络模型和softmax分类器(线性分类)模型在线性不可分的数据集上的效果。神经网络胜出。
区别:用softmax分类器不像神经网络是一种层次结构,还有一些激活函数等等,只是通过一种简单的结构来求解分类任务。
制作数据drawData.py
import numpy as np
import matplotlib.pyplot as plt
#ubuntu 16.04 sudo pip instal matplotlib
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
np.random.seed(0)
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D))
y = np.zeros(N*K, dtype='uint8')
for j in xrange(K):
ix = range(N*j,N*(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j
fig = plt.figure()
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.xlim([-1,1])
plt.ylim([-1,1])
plt.show()
实验效果
用softmax分类器来拟合数据lineCla.py
#Train a Linear Classifier
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D))
y = np.zeros(N*K, dtype='uint8')
for j in xrange(K):
ix = range(N*j,N*(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j
W = 0.01 * np.random.randn(D,K)
b = np.zeros((1,K))
# some hyperparameters
step_size = 1e-0
reg = 1e-3 # regularization strength
# gradient descent loop
num_examples = X.shape[0]
for i in xrange(1000):
#print X.shape
# evaluate class scores, [N x K]
scores = np.dot(X, W) + b #x:300*2 scores:300*3
#print scores.shape
# compute the class probabilities
exp_scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K] probs:300*3
print probs.shape
# compute the loss: average cross-entropy loss and regularization
corect_logprobs = -np.log(probs[range(num_examples),y]) #corect_logprobs:300*1
print corect_logprobs.shape
data_loss = np.sum(corect_logprobs)/num_examples
reg_loss = 0.5*reg*np.sum(W*W)
loss = data_loss + reg_loss
if i % 100 == 0:
print "iteration %d: loss %f" % (i, loss)
# compute the gradient on scores
dscores = probs
dscores[range(num_examples),y] -= 1
dscores /= num_examples
# backpropate the gradient to the parameters (W,b)
dW = np.dot(X.T, dscores)
db = np.sum(dscores, axis=0, keepdims=True)
dW += reg*W # regularization gradient
# perform a parameter update
W += -step_size * dW
b += -step_size * db
scores = np.dot(X, W) + b
predicted_class = np.argmax(scores, axis=1)
print 'training accuracy: %.2f' % (np.mean(predicted_class == y))
h = 0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = np.dot(np.c_[xx.ravel(), yy.ravel()], W) + b
Z = np.argmax(Z, axis=1)
Z = Z.reshape(xx.shape)
fig = plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.show()
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D))
y = np.zeros(N*K, dtype='uint8')
for j in xrange(K):
ix = range(N*j,N*(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j
h = 100 # size of hidden layer
W = 0.01 * np.random.randn(D,h)# x:300*2 2*100
b = np.zeros((1,h))
W2 = 0.01 * np.random.randn(h,K)
b2 = np.zeros((1,K))
# some hyperparameters
step_size = 1e-0
reg = 1e-3 # regularization strength
# gradient descent loop
num_examples = X.shape[0]
for i in xrange(2000):
# evaluate class scores, [N x K]
hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation hidden_layer:300*100
#print hidden_layer.shape
scores = np.dot(hidden_layer, W2) + b2 #scores:300*3
#print scores.shape
# compute the class probabilities
exp_scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K]
#print probs.shape
# compute the loss: average cross-entropy loss and regularization
corect_logprobs = -np.log(probs[range(num_examples),y])
data_loss = np.sum(corect_logprobs)/num_examples
reg_loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2)
loss = data_loss + reg_loss
if i % 100 == 0:
print "iteration %d: loss %f" % (i, loss)
# compute the gradient on scores
dscores = probs
dscores[range(num_examples),y] -= 1
dscores /= num_examples
# backpropate the gradient to the parameters
# first backprop into parameters W2 and b2
dW2 = np.dot(hidden_layer.T, dscores)
db2 = np.sum(dscores, axis=0, keepdims=True)
# next backprop into hidden layer
dhidden = np.dot(dscores, W2.T)
# backprop the ReLU non-linearity
dhidden[hidden_layer <= 0] = 0
# finally into W,b
dW = np.dot(X.T, dhidden)
db = np.sum(dhidden, axis=0, keepdims=True)
# add regularization gradient contribution
dW2 += reg * W2
dW += reg * W
# perform a parameter update
W += -step_size * dW
b += -step_size * db
W2 += -step_size * dW2
b2 += -step_size * db2
hidden_layer = np.maximum(0, np.dot(X, W) + b)
scores = np.dot(hidden_layer, W2) + b2
predicted_class = np.argmax(scores, axis=1)
print 'training accuracy: %.2f' % (np.mean(predicted_class == y))
h = 0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = np.dot(np.maximum(0, np.dot(np.c_[xx.ravel(), yy.ravel()], W) + b), W2) + b2
Z = np.argmax(Z, axis=1)
Z = Z.reshape(xx.shape)
fig = plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.show()
实验效果:
19.神经网络案例-cifar分类任务
让神经网络学习每个类别有什么特征。对于新的数据,用神经网络进行分类。
步骤:
# fc_net.py #网络的整体架构
from layer_utils import *
import numpy as np
class TwoLayerNet(object):
def __init__(self, input_dim = 3*32*32, hidden_dim = 100, num_classes = 10,
weight_scale=1e-3, reg=0.0):
'''
initialize a new network
Inputs:
dropout: Scalar between 0 and 1 giving dropout strength.
weight_scale: Scalar giving the standard deviation for random
initialization of the weights.(We hope weights are not so large)
reg: Scalar giving L2 regularization strength.
'''
self.params = []
self.reg = reg
self.params['w1'] = weight_scale * np.random.randn(input_dim, hidden_dim)
sels.params['b1] =np.zeros((1, hidden_dim))
self.params['w2'] = weight_scale * np.random.randn(hidden_dim, num_classes)
sels.params['b2] =np.zeros((1, num_classes))
def loss(self, X, y=None):
'''
compute loss and gradient for a minibatch of data
前向传播
'''
scores = None
N = X.shape[0]
W1, b1 = self.params['w1'], self.params['b1']
W2, b2 = self.params['w2'], self.params['b2']
h1, cache1 = affine_relu_forward(X, W1, b1)
out, cache2 = affine_forward(h1, W2, b2)
scores = out
if y is None:
return scores
loss, grads = 0, {}
data_loss, dscores = softmax_loss(scores, y)
reg_loss = 0.5 * self.reg * np.sum(W1*W1) + 0.5*self.reg * np.sum(W2*W2)
loss = data_loss + reg_loss
# Backward pass:compute gradients
dh1, dW2, db2 = affine_backward(dscores, cache2)
dX, dW1, db1 = affine_relu_backward(dh1, cache1)
# Add the regularization gradient contribution
dW2 += self.reg * W2 #self.reg是正则化惩罚力度
dW1 += self.reg * W1
grads['W1'] = dW1
grads['b1'] = db1
grads['W2'] = dW2
grads['b2'] = db2
return loss, grads
layer_utils.py
# layer_utils.py
from layers import *
def affine_relu_forward(x, w, b):
'''
Returns a tuple of:
-out:output from the Relu
-cache:object to give to the backward pass
'''
a, fc_cache = affine_forward(x,w,b)
out, relu_cache = relu_forward(a)
cache = (fc_cache, relu_cache)
return out, cache
def affine_relu_backward(dout, cache):
fc_cache, relu_cache = cache
da = relu_backward(dout, relu_cache)
dx, dw, db = affine_backward(da, fc_cache)
return dx, dw, db
layers.py
# layers.py
import numpy as np
def affine_forward(x, w, b):
out = None
N = x.shape[0]
x_row = x.reshape(N, -1)
out = np.dot(x_row, w) + b
cache = (x, w, b)
return out, cache
def affine_backward(dout, cache):
x, w, b = cache
dx, dw, db = None, None, None
dx = np.dot(dout, w.T)
dx = np.reshape(dx, x.shape)
x_row = x.reshape(x.shape[0], -1)
dw = np.dot(x_row.T, dout)
db = np.sum(dout, axis=0, keepdims=True)
return dx, dw, db
def relu_forward(x):
out = None
out = ReLU(x)
cache = x
return out, cache
def relu_backward(dout, cache):
dx, x = None, cache
dx = dout
dx[x <= 0]= 0
return dx
def softmax_loss(x, y):
# data normalization
probs = np.exp(x - np.max(x, axis=1, keepdims=True))
probs /= np.sum(probs, axis=1, keepdims=True)
N = x.shape[0]
loss = -np.sum(np.log(probs[np.arange(N), y])) / N
dx = probs.copy()
dx[np.arange(N), y] -= 1
dx /= N
return loss, dx
def ReLU(x):
''' ReLU non-linearity'''
return np.maximum(0, x)
训练数据集的启动入口
two_layer_fc_net_start.py
# two_layer_fc_net_start.py
import matplotlib.pyplot as plt
from fc_net import *
from data_utils import get_CIFAR10_data
from solver import Solver
data = get_CIFAR10_data()
model = TwoLayerNet(reg = 0.9)
solver = Solver(model, data,
lr_decay=0.95,
print_every=100, num_epochs=40, batch_size=400,
update_rule='sgd_momentum',
optim_config={'learning_rate': 5e-4, 'momentum':0.9})
solver.train()
关于Cifar10分类的完整代码,请参看:
https://github.com/sunshinezhihuo/cifar10
Solver解释:
用Solver制定网络的超参数。
衰减策略:学习率衰减self.lr_decay,针对于epoch而言的
self.batch_size:一次训练多少张图片
self.num_epochs:迭代多少轮,一轮是全部data.
前向传播要loss,反向传播要w1,d1,w2,d2,之后进行权重参数的更新,这样,就完成了一次网络迭代的过程。
网络的又快又好发展
快:momentum:动量,主要用在权重更新的时候,是用来修改检索方向加快收敛速度的一种简单方法。
即,momentum可以加速收敛,方便网络快速学习。
好:learning rate decay
关于深度学习超参数简单理解,请参见https://zhuanlan.zhihu.com/p/23906526