递归help函数 分为help(target - nums[start],start + 1) 和 help(target + nums[start],start - 1)
递归结束条件是start= nums.length 再判断target 等不等于 0
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols +
and -
. For each integer, you should choose one from +
and -
as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
这道题给了我们一个数组,和一个目标值,让我们给数组中每个数字加上正号或负号,然后求和要和目标值相等,求有多少中不同的情况。那么对于这种求多种情况的问题,我最想到的方法使用递归来做。我们从第一个数字,调用递归函数,在递归函数中,分别对目标值进行加上当前数字调用递归,和减去当前数字调用递归,这样会涵盖所有情况,并且当所有数字遍历完成后,我们看若目标值为0了,则结果res自增1,参见代码如下:
class Solution {
private int count = 0;
public int findTargetSumWays(int[] nums, int S) {
help(nums, S, 0);
return count;
}
private void help(int[] nums, int S, int start){
if(nums.length == start){
if(S == 0)
count++;
return;
}
help(nums, S - nums[start], start + 1);
help(nums, S + nums[start], start + 1);
}
}
错误的解法 res在每次赋值的过成功就是0了 res的改变已经无法体现到实际之中
class Solution {
public int findTargetSumWays(int[] nums, int S) {
int res = 0;
helper(nums, S, 0, res);
return res;
}
private void helper(int[] nums, int s, int start, int res){
if(start == nums.length){
if(s == 0)
res++;
return;
}
helper(nums, s - nums[start], start + 1, res);
helper(nums, s + nums[start], start + 1, res);
}
}
该问题可以转换为 Subset Sum 问题,从而使用 0-1 背包的方法来求解。
可以将这组数看成两部分,P 和 N,其中 P 使用正号,N 使用负号,有以下推导:
sum(P) - sum(N) = target
sum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)
2 * sum(P) = target + sum(nums)
因此只要找到一个子集,令它们都取正号,并且和等于 (target + sum(nums))/2,就证明存在解。
dp方法
public int findTargetSumWays(int[] nums, int S) {
int sum = computeArraySum(nums);
if (sum < S || (sum + S) % 2 == 1) {
return 0;
}
int W = (sum + S) / 2;
int[] dp = new int[W + 1];
dp[0] = 1;
for (int num : nums) {
for (int i = W; i >= num; i--) {
dp[i] = dp[i] + dp[i - num];
}
}
return dp[W];
}
private int computeArraySum(int[] nums) {
int sum = 0;
for (int num : nums) {
sum += num;
}
return sum;
}
DFS 解法:
public int findTargetSumWays(int[] nums, int S) {
return findTargetSumWays(nums, 0, S);
}
private int findTargetSumWays(int[] nums, int start, int S) {
if (start == nums.length) {
return S == 0 ? 1 : 0;
}
return findTargetSumWays(nums, start + 1, S + nums[start])
+ findTargetSumWays(nums, start + 1, S - nums[start]);
}