from array import array
from os import listdir
from numpy import *
import operator
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
#k-邻近算法核心
#inX:用于分类的输入向量。即将对其进行分类。
#dataSet:训练样本集
#labels:标签向量
def classify0(inX, dataSet, labels,k):
dataSetSize = dataSet.shape[0] #得到数组的行数
diffMat= tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDisIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDisIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
#从文本文件解析数据
def file2matrix(filename):
fr= open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returnMat = zeros((numberOfLines, 3))
d = {'didntLike': 1, 'smallDoses': 2, 'largeDoses': 3}
classLabelVector = []
index =0
for line in arrayOLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
#classLabelVector.append(d[listFromLine[-1]]) # 取到字典中对应的label值
classLabelVector.append(listFromLine[-1]) # 取到字典中对应的label值
index += 1
return returnMat, classLabelVector
#归一化特征值:处理不同范围的特征值
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet- tile(minVals ,(m,1))
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges, minVals
#分类器测试代码
def datingClassTest():
hoRatio = 0.10
datingDataMat, datingLabels = file2matrix('datingTestSet.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print("the classifier came back with: %s, the real answer is: %s" % (classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]): errorCount += 1.0
print("the total error rate is : %f " %(errorCount/float(numTestVecs)))
#appointment site预测函数
def classifyPerson():
resultList = ['not at all', 'in small doses','in large doses']
percentTats = float(input("percentage of time spent playing video games?"))
ffMiles = float(input("frequent flier miles earned per year?"))
iceCream = float(input("liters of ice cream consumed per year?"))
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCream])
classifierResult = classify0((inArr-minVals)/ranges, normMat, datingLabels,3)
print("You will probably like this person:",resultList[int(classifierResult)- 1])
#图像转测试向量
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr =fr.readline()
for j in range(32):
returnVect[0,32*i+j] = lineStr[j]
return returnVect
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('digits/trainingDigits')
m = len(trainingFileList)
trainingMat = zeros((m, 1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('digits/trainingDigits/%s' % fileNameStr)
testFileList = listdir('digits/testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('digits/testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print("the classifier came back with: %d ,the real answer is : %d"%(int(classifierResult),int(classNumStr)))
if(classifierResult != classNumStr): errorCount += 1.0
print("\nthe total number of errors is: %d"% errorCount)
print("\nthe total error rate is: %f" % (errorCount/float(mTest)))