最近研究了自动白平衡的几种方法,参考了不少,最为感谢python opencv白平衡算法(但是这篇文章提供的算法没有考虑到uint8格式问题,产生了图像的局部失真,这里做了改进):(<-原图,失真图->)
谈谈总体理解:
(本来目标是同一张图,无论在什么样子的滤镜、光照下最后白平衡结果要尽可能相同,最后发现都太难了)
1.均值、灰度世界都建立一种计算平均的算法基础上,适用于色彩分布比较全面平均的场景,其实在很多场合都不适用
2.完美反射、动态阈值建立在白点的基础上,比如完美反射认为最亮的点为白点,以白点为基础进行整体的调节,导致的问题在于如果整张图没有白点算法效果非常不好,其次,由于不同色温下白点所呈现的数值差异性很大,导致白平衡结果不尽如人意。且Ratio的选取也有效果差异。还有一种做法是固定某一区域为白色区域然后算法计算,延展全图,效果展示使用uint8格式时一定要注意的问题(python-opencv完美反射白平衡算法)
3.基于图像分析的偏色检测及颜色校正,看了这篇原文,感觉整体意思是提供一种偏色检测的做法,然后还是采用基于完美反射、灰度世界的改进算法进行白平衡,效果同样局限。
结果展示,在不同的场景下每种白平衡结果都有不同,没有通用性的最好算法:
第一张: 原图
第二张:均值白平衡法
第三张: 完美反射
第四张: 灰度世界假设
第五张: 基于图像分析的偏色检测及颜色校正方法
第六张: 动态阈值算法
源码:
import cv2
import numpy as np
import random
def white_balance_1(img):
'''
第一种简单的求均值白平衡法
:param img: cv2.imread读取的图片数据
:return: 返回的白平衡结果图片数据
'''
# 读取图像
r, g, b = cv2.split(img)
r_avg = cv2.mean(r)[0]
g_avg = cv2.mean(g)[0]
b_avg = cv2.mean(b)[0]
# 求各个通道所占增益
k = (r_avg + g_avg + b_avg) / 3
kr = k / r_avg
kg = k / g_avg
kb = k / b_avg
r = cv2.addWeighted(src1=r, alpha=kr, src2=0, beta=0, gamma=0)
g = cv2.addWeighted(src1=g, alpha=kg, src2=0, beta=0, gamma=0)
b = cv2.addWeighted(src1=b, alpha=kb, src2=0, beta=0, gamma=0)
balance_img = cv2.merge([b, g, r])
return balance_img
def white_balance_2(img_input):
'''
完美反射白平衡
STEP 1:计算每个像素的R\G\B之和
STEP 2:按R+G+B值的大小计算出其前Ratio%的值作为参考点的的阈值T
STEP 3:对图像中的每个点,计算其中R+G+B值大于T的所有点的R\G\B分量的累积和的平均值
STEP 4:对每个点将像素量化到[0,255]之间
依赖ratio值选取而且对亮度最大区域不是白色的图像效果不佳。
:param img: cv2.imread读取的图片数据
:return: 返回的白平衡结果图片数据
'''
img = img_input.copy()
b, g, r = cv2.split(img)
m, n, t = img.shape
sum_ = np.zeros(b.shape)
for i in range(m):
for j in range(n):
sum_[i][j] = int(b[i][j]) + int(g[i][j]) + int(r[i][j])
hists, bins = np.histogram(sum_.flatten(), 766, [0, 766])
Y = 765
num, key = 0, 0
ratio = 0.01
while Y >= 0:
num += hists[Y]
if num > m * n * ratio / 100:
key = Y
break
Y = Y - 1
sum_b, sum_g, sum_r = 0, 0, 0
time = 0
for i in range(m):
for j in range(n):
if sum_[i][j] >= key:
sum_b += b[i][j]
sum_g += g[i][j]
sum_r += r[i][j]
time = time + 1
avg_b = sum_b / time
avg_g = sum_g / time
avg_r = sum_r / time
maxvalue = float(np.max(img))
# maxvalue = 255
for i in range(m):
for j in range(n):
b = int(img[i][j][0]) * maxvalue / int(avg_b)
g = int(img[i][j][1]) * maxvalue / int(avg_g)
r = int(img[i][j][2]) * maxvalue / int(avg_r)
if b > 255:
b = 255
if b < 0:
b = 0
if g > 255:
g = 255
if g < 0:
g = 0
if r > 255:
r = 255
if r < 0:
r = 0
img[i][j][0] = b
img[i][j][1] = g
img[i][j][2] = r
return img
def white_balance_3(img):
'''
灰度世界假设
:param img: cv2.imread读取的图片数据
:return: 返回的白平衡结果图片数据
'''
B, G, R = np.double(img[:, :, 0]), np.double(img[:, :, 1]), np.double(img[:, :, 2])
B_ave, G_ave, R_ave = np.mean(B), np.mean(G), np.mean(R)
K = (B_ave + G_ave + R_ave) / 3
Kb, Kg, Kr = K / B_ave, K / G_ave, K / R_ave
Ba = (B * Kb)
Ga = (G * Kg)
Ra = (R * Kr)
for i in range(len(Ba)):
for j in range(len(Ba[0])):
Ba[i][j] = 255 if Ba[i][j] > 255 else Ba[i][j]
Ga[i][j] = 255 if Ga[i][j] > 255 else Ga[i][j]
Ra[i][j] = 255 if Ra[i][j] > 255 else Ra[i][j]
# print(np.mean(Ba), np.mean(Ga), np.mean(Ra))
dst_img = np.uint8(np.zeros_like(img))
dst_img[:, :, 0] = Ba
dst_img[:, :, 1] = Ga
dst_img[:, :, 2] = Ra
return dst_img
def white_balance_4(img):
'''
基于图像分析的偏色检测及颜色校正方法
:param img: cv2.imread读取的图片数据
:return: 返回的白平衡结果图片数据
'''
def detection(img):
'''计算偏色值'''
img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(img_lab)
d_a, d_b, M_a, M_b = 0, 0, 0, 0
for i in range(m):
for j in range(n):
d_a = d_a + a[i][j]
d_b = d_b + b[i][j]
d_a, d_b = (d_a / (m * n)) - 128, (d_b / (n * m)) - 128
D = np.sqrt((np.square(d_a) + np.square(d_b)))
for i in range(m):
for j in range(n):
M_a = np.abs(a[i][j] - d_a - 128) + M_a
M_b = np.abs(b[i][j] - d_b - 128) + M_b
M_a, M_b = M_a / (m * n), M_b / (m * n)
M = np.sqrt((np.square(M_a) + np.square(M_b)))
k = D / M
print('偏色值:%f' % k)
return
b, g, r = cv2.split(img)
# print(img.shape)
m, n = b.shape
# detection(img)
I_r_2 = np.zeros(r.shape)
I_b_2 = np.zeros(b.shape)
sum_I_r_2, sum_I_r, sum_I_b_2, sum_I_b, sum_I_g = 0, 0, 0, 0, 0
max_I_r_2, max_I_r, max_I_b_2, max_I_b, max_I_g = int(r[0][0] ** 2), int(r[0][0]), int(b[0][0] ** 2), int(b[0][0]), int(g[0][0])
for i in range(m):
for j in range(n):
I_r_2[i][j] = int(r[i][j] ** 2)
I_b_2[i][j] = int(b[i][j] ** 2)
sum_I_r_2 = I_r_2[i][j] + sum_I_r_2
sum_I_b_2 = I_b_2[i][j] + sum_I_b_2
sum_I_g = g[i][j] + sum_I_g
sum_I_r = r[i][j] + sum_I_r
sum_I_b = b[i][j] + sum_I_b
if max_I_r < r[i][j]:
max_I_r = r[i][j]
if max_I_r_2 < I_r_2[i][j]:
max_I_r_2 = I_r_2[i][j]
if max_I_g < g[i][j]:
max_I_g = g[i][j]
if max_I_b_2 < I_b_2[i][j]:
max_I_b_2 = I_b_2[i][j]
if max_I_b < b[i][j]:
max_I_b = b[i][j]
[u_b, v_b] = np.matmul(np.linalg.inv([[sum_I_b_2, sum_I_b], [max_I_b_2, max_I_b]]), [sum_I_g, max_I_g])
[u_r, v_r] = np.matmul(np.linalg.inv([[sum_I_r_2, sum_I_r], [max_I_r_2, max_I_r]]), [sum_I_g, max_I_g])
# print(u_b, v_b, u_r, v_r)
b0, g0, r0 = np.zeros(b.shape, np.uint8), np.zeros(g.shape, np.uint8), np.zeros(r.shape, np.uint8)
for i in range(m):
for j in range(n):
b_point = u_b * (b[i][j] ** 2) + v_b * b[i][j]
g0[i][j] = g[i][j]
# r0[i][j] = r[i][j]
r_point = u_r * (r[i][j] ** 2) + v_r * r[i][j]
if r_point>255:
r0[i][j] = 255
else:
if r_point<0:
r0[i][j] = 0
else:
r0[i][j] = r_point
if b_point>255:
b0[i][j] = 255
else:
if b_point<0:
b0[i][j] = 0
else:
b0[i][j] = b_point
return cv2.merge([b0, g0, r0])
def white_balance_5(img):
'''
动态阈值算法
算法分为两个步骤:白点检测和白点调整。
只是白点检测不是与完美反射算法相同的认为最亮的点为白点,而是通过另外的规则确定
:param img: cv2.imread读取的图片数据
:return: 返回的白平衡结果图片数据
'''
b, g, r = cv2.split(img)
"""
YUV空间
"""
def con_num(x):
if x > 0:
return 1
if x < 0:
return -1
if x == 0:
return 0
yuv_img = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
(y, u, v) = cv2.split(yuv_img)
# y, u, v = cv2.split(img)
m, n = y.shape
sum_u, sum_v = 0, 0
max_y = np.max(y.flatten())
# print(max_y)
for i in range(m):
for j in range(n):
sum_u = sum_u + u[i][j]
sum_v = sum_v + v[i][j]
avl_u = sum_u / (m * n)
avl_v = sum_v / (m * n)
du, dv = 0, 0
# print(avl_u, avl_v)
for i in range(m):
for j in range(n):
du = du + np.abs(u[i][j] - avl_u)
dv = dv + np.abs(v[i][j] - avl_v)
avl_du = du / (m * n)
avl_dv = dv / (m * n)
num_y, yhistogram, ysum = np.zeros(y.shape), np.zeros(256), 0
radio = 0.5 # 如果该值过大过小,色温向两极端发展
for i in range(m):
for j in range(n):
value = 0
if np.abs(u[i][j] - (avl_u + avl_du * con_num(avl_u))) < radio * avl_du or np.abs(
v[i][j] - (avl_v + avl_dv * con_num(avl_v))) < radio * avl_dv:
value = 1
else:
value = 0
if value <= 0:
continue
num_y[i][j] = y[i][j]
yhistogram[int(num_y[i][j])] = 1 + yhistogram[int(num_y[i][j])]
ysum += 1
# print(yhistogram.shape)
sum_yhistogram = 0
# hists2, bins = np.histogram(yhistogram, 256, [0, 256])
# print(hists2)
Y = 255
num, key = 0, 0
while Y >= 0:
num += yhistogram[Y]
if num > 0.1 * ysum: # 取前10%的亮点为计算值,如果该值过大易过曝光,该值过小调整幅度小
key = Y
break
Y = Y - 1
# print(key)
sum_r, sum_g, sum_b, num_rgb = 0, 0, 0, 0
for i in range(m):
for j in range(n):
if num_y[i][j] > key:
sum_r = sum_r + r[i][j]
sum_g = sum_g + g[i][j]
sum_b = sum_b + b[i][j]
num_rgb += 1
avl_r = sum_r / num_rgb
avl_g = sum_g / num_rgb
avl_b = sum_b / num_rgb
for i in range(m):
for j in range(n):
b_point = int(b[i][j]) * int(max_y) / avl_b
g_point = int(g[i][j]) * int(max_y) / avl_g
r_point = int(r[i][j]) * int(max_y) / avl_r
if b_point>255:
b[i][j] = 255
else:
if b_point<0:
b[i][j] = 0
else:
b[i][j] = b_point
if g_point>255:
g[i][j] = 255
else:
if g_point<0:
g[i][j] = 0
else:
g[i][j] = g_point
if r_point>255:
r[i][j] = 255
else:
if r_point<0:
r[i][j] = 0
else:
r[i][j] = r_point
return cv2.merge([b, g, r])
'''
img : 原图
img1:均值白平衡法
img2: 完美反射
img3: 灰度世界假设
img4: 基于图像分析的偏色检测及颜色校正方法
img5: 动态阈值算法
'''
img = cv2.imread('./dataset/1/3.JPG')
# img = cv2.imread('./dataset/2/1_'+str(i)+'.JPG')
img1 = white_balance_1(img)
img2 = white_balance_2(img)
img3 = white_balance_3(img)
img4 = white_balance_4(img)
img5 = white_balance_5(img)
print('----------------------')
img_stack = np.vstack([img,img1,img2,img3,img4,img5])
# cv2.imwrite("./dataset/"+str(i)+'.JPG',img_stack)
cv2.imshow('image',img_stack)
cv2.waitKey(0)