- Python的情感词典情感分析和情绪计算
yava_free
python大数据人工智能
一.大连理工中文情感词典情感分析(SentimentAnalysis)和情绪分类(EmotionClassification)都是非常重要的文本挖掘手段。情感分析的基本流程如下图所示,通常包括:自定义爬虫抓取文本信息;使用Jieba工具进行中文分词、词性标注;定义情感词典提取每行文本的情感词;通过情感词构建情感矩阵,并计算情感分数;结果评估,包括将情感分数置于0.5到-0.5之间,并可视化显示。目
- 三国演义python分析系统_Python之三国演义(上)
weixin_40002692
三国演义python分析系统
一、设计实现详细说明1.1任务详细描述以中国四大名著之一——《三国演义》为蓝本,结合python数据分析知识进行本次的文本分析。《三国演义》全书共120回。本次的分析主要基于统计分析、文本挖掘等知识。1.2设计思路详细描述数据准备、数据预处理、分词等全书各个章节的字数、词数、段落等相关方面的关系整体词频和词云的展示全书各个章节进行聚类分析并可视化,主要进行了根据IF-IDF的系统聚类和根据词频的L
- **解读心理健康,引领未来智能——MentaLLaMA:大型语言模型的革命性应用**
滑辰煦Marc
解读心理健康,引领未来智能——MentaLLaMA:大型语言模型的革命性应用在如今的数字时代,社交媒体成为人们分享生活、表达情绪的重要平台。然而,从中洞察公众的心理健康状况并提供及时帮助却是一大挑战。为此,由国际知名科研机构如英国曼彻斯特大学的国家文本挖掘中心(NaCTeM)和人工智能研究中心(AIST)等合作研发的开源项目——MentaLLaMA应运而生。这个项目不仅提供了一种创新的方法来分析社
- 情感分析相关汇总
宁缺100
自然语言处理自然语言处理情感分析
文章目录情感分析语音情感识别句子or文档级别情感分析情感词汇字典大连理工大学中文情感词汇本体中文金融情感词典金融社交媒体数据应用的市场情绪词典中文情感分析常用词典台湾大学NTUSD简体中文情感词典BosonNLPABSA细腻度情感分析相关比赛【千言情感分析】SKEP句子级情感分析相关博客或者论文中文情感分析(SentimentAnalysis)的难点在哪?现在做得比较好的有哪几家?文本挖掘在商品评
- 计算机毕业设计之基于Python的旅游景点评论内容分析与研究
微信bishe58
课程设计springbootpython信息可视化
旅游景点评论内容分析与研究是一个涉及文本挖掘、情感分析和数据可视化等多领域技术的复杂过程。本研究以Python编程语言为基础,首先收集了来自不同旅游平台的用户评论数据。通过运用自然语言处理(NLP)技术,清洗并预处理了这些数据,以便于后续分析。随后,采用情感分析方法来识别和量化评论中的主观态度和情绪倾向,从而判断游客的整体满意度。此外,还运用词云、主题建模等手段来探索游客评论中的关键词汇和讨论主题
- 【Python机器学习】NLP的部分实际应用
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python大数据
自然语言处理在现实中非常多的应用,下表是其中的一些例子:应用示例1示例2示例3搜索web文档自动补全编辑拼写语法风格对话聊天机器人助手行程安排写作索引用语索引目录电子邮件垃圾邮件过滤分类优先级排序文本挖掘摘要知识提取医学诊断法律法律断案先例搜索传票分类新闻事件检索真相核查标题排字归属剽窃检测文字取证风格指导情感分析团队士气监控产品评论分类客户关怀行为预测金融选举预测营销创作电影脚本诗歌歌词如果在索
- Python中的自然语言处理和文本挖掘
api77
电商apiapipython自然语言处理easyui开发语言网络前端java
在Python中,自然语言处理(NLP)和文本挖掘通常涉及对文本数据进行清洗、转换、分析和提取有用信息的过程。Python有许多库和工具可以帮助我们完成这些任务,其中最常用的包括nltk(自然语言处理工具包)、spaCy、gensim、textblob和scikit-learn等。以下是一个简单的例子,展示了如何使用Python和nltk库进行基本的自然语言处理和文本挖掘。安装必要的库首先,确保你
- 【医学大模型 知识增强】SMedBERT:结构化语义知识 + 医学大模型 = 显著提升大模型医学文本挖掘性能
Debroon
医学大模型:个性化精准安全可控人工智能
SMedBERT:结构化语义知识+医学大模型=显著提升医学文本挖掘任务性能名词解释结构化语义知识预训练语言模型医学文本挖掘任务提出背景具体步骤提及-邻居混合注意力机制实体嵌入增强实体描述增强三元组句子增强提及-邻居上下文建模域内词汇权重学习领域自监督任务预训练SMedBERT图示左半部分:SMedBERT架构右半部分:预训练任务方法部分数学部分效果论文:https://arxiv.org/pdf/
- 人工智能
阳光照我心房
今天看了下人工智能的资料,了解了下,人工智能的应用方向,实现技术。了解到人工智能、机器学习、深度学习的关系,神经网络是深度学习的实现的模型。语音、图像、机器翻译、机器人、文本挖掘和分类。感觉机器学习自己挺感兴趣啊
- 探索NLP中的N-grams:理解,应用与优化
冷冻工厂
程序人生
简介n-gram[1]是文本文档中n个连续项目的集合,其中可能包括单词、数字、符号和标点符号。N-gram模型在许多与单词序列相关的文本分析应用中非常有用,例如情感分析、文本分类和文本生成。N-gram建模是用于将文本从非结构化格式转换为结构化格式的众多技术之一。n-gram的替代方法是词嵌入技术,例如word2vec。N-grams广泛用于文本挖掘和自然语言处理任务。示例通过计算每个唯一的n元语
- 机器学习概述及流程
机智的冷露
机器学习人工智能机器学习python
概述一、目标1、掌握机器学习基础环境安装2、掌握常用的科学计算库对数据进行展示、分析二、人工智能三要素1、数据2、算法2、算力:CPU适合I/O密集型程序,GPU适合计算密集型和易于并行的程序。三、人工智能主要分支1、计算机视觉(CV)2、自然语言处理(NLP):文本挖掘/分类、机器翻译、语音识别3、机器人四、机器学习工作流程简介从数据中自动分析获得模型,再利用模型对未知数据进行预测。1、获取数据
- 文本挖掘HW3
在做算法的巨巨
importosimportos.pathimportcodecsimportpandasaspdimportnumpyasnpfilePaths=[]fileContents=[]a=os.walk("C:/Users/dell/Desktop/datamining/2.1+语料库/2.1/SogouC.mini/Sample")forroot,dirs,filesina:fornameinfi
- 数据科学 | Python酷炫词云图原来可以这么玩
欣一2002
可视化python数据分析数据可视化csv
↑↑↑↑↑点击上方蓝色字关注我们!『运筹OR帷幄』转载作者:费弗里编者按词云图是文本挖掘中用来表征词频的数据可视化图像,通过它可以很直观地展现文本数据中的高频词。词云图过滤掉大量的低频低质的文本信息,使得浏览者只要一眼扫过文本就可领略文本的主旨。很多文章都会用词云图来直观的表示数据分析结果,词云图是如果制作的就在这篇文章中寻找答案吧。本文对应脚本及数据在后台领取,回复【词云图】1简介词云图是文本挖
- 新媒体与传媒行业数据分析实践:从网络爬虫到文本挖掘的综合应用,以“中国文化“为主题
八块腹肌的小胖
数据分析python
大家好,我是八块腹肌的小胖,下面将围绕微博“中国文化”以数据分析、数据处理、建模及可视化等操作目录1、数据获取2、数据处理3、词频统计及词云展示4、文本聚类分析5、文本情感倾向性分析6、情感倾向演化分析7、总结1、数据获取本任务以新浪微博为目标网站,爬取“中国文化”为主题的微博数据进行数据预处理、数据可视化等操作。目标网站如图1所示:图1微博网站及分析通过分析微博网站,使用爬虫获取代码,爬虫核心伪
- 基于TF-IDF的关键词提取的实现
Algorithm_Engineer_
自然语言处理tf-idfpython人工智能
一.TF-IDF的简单介绍TF-IDF(TermFrequency-InverseDocumentFrequency)是一种用于信息检索与文本挖掘的常用加权技术,用于评估一个词在文档集合中的重要性。它结合了词频和逆文档频率的概念。以下是TF-IDF的简单介绍:词频(TF-TermFrequency):表示一个词在文档中出现的频率。通常,词频越高,说明该词在文档中越重要。公式:TF(t,d)=词t在
- 看书标记【R语言数据分析项目精解:理论、方法、实战 9】
小胡涂记
R语言资料实现r语言数据分析开发语言
看书标记——R语言Chapter9文本挖掘——点评数据展示策略9.1项目背景、目标和方案9.1.1项目背景9.1.2项目目标9.1.3项目方案1.建立评论文本质量量化指标2.建立用户相似度模型3.对用户评论进行情感性分析9.2项目技术理论简介9.2.1评论文本质量量化指标模型1.主题覆盖量2.评论文本分词数量3.评论点赞数4.评论中的照片数5.评论分值偏移9.2.2用户相似度模型1.pearson
- NLP深入学习(三):TF-IDF 详解以及文本分类/聚类用法
Smaller、FL
NLP自然语言处理学习tf-idfnlp人工智能
文章目录0.引言1.什么是TF-IDF2.TF-IDF作用3.Python使用3.1计算tf-idf的值3.2文本分类3.3文本聚类4.参考0.引言前情提要:《NLP深入学习(一):jieba工具包介绍》《NLP深入学习(二):nltk工具包介绍》1.什么是TF-IDFTF-IDF(TermFrequency-InverseDocumentFrequency)是一种用于信息检索和文本挖掘的常用加权
- [文本挖掘和知识发现] 01.红楼梦主题演化分析——文献可视化分析软件CiteSpace入门
Eastmount
文本挖掘和知识发现Python学习系列CiteSpace数据分析文本挖掘主题演化图书情报
八月太忙,还是写一篇吧!本文是作者2023年8月底新开的专栏——《文本挖掘和知识发现》,主要结合Python、大数据分析和人工智能分享文本挖掘、知识图谱、知识发现、图书情报等内容。此外,这些内容也是作者《文本挖掘和知识发现(Python版)》书籍的部分介绍,本书预计2024年上市,采用通俗易懂和图文并茂的形式藐视,会更加系统地介绍文本挖掘和知识发现,共计20章节内容,涵盖上百个案例。您的关注、点赞
- BM25(Best Matching 25)算法基本思想
NLP工程化
Python教程python信息检索BM25
BM25(BestMatching25)是一种用于信息检索(InformationRetrieval)和文本挖掘的算法,它被广泛应用于搜索引擎和相关领域。BM25基于TF-IDF(TermFrequency-InverseDocumentFrequency)的思想,但对其进行了改进以考虑文档的长度等因素。一.基本思想 以下是BM25算法的基本思想:TF-IDF的改进:BM25通过对文档中的每
- 文本挖掘与信息抽取:从非结构化数据中提取知识的关键技术
人工智能的光信号
人工智能
人工智能的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心,我为大家整理了一份600多G的学习资源,基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!记得点赞、关注、收藏、转发哦!进群扫码领资料文本挖掘和信息抽取是自然语言处理领域中的重要技术,它们可以帮助我们从大量的文本数据中提取出有用的信息和知识。本文将对文本挖掘和
- Python文本挖掘学习笔记- sentiment analysis情感分析
认真学习的兔子
量化用户的内容、想法、信念和意见被称为情感分析。用户的在线帖子、博客、推特、产品的反馈有助于商业人士了解目标受众,并在产品和服务方面进行创新。情绪分析有助于以更好、更准确的方式了解人们。它不仅限于市场营销,而且还可以用于政治、研究和安全领域。人类的交流不仅仅局限于语言,它比语言更重要。情感是文字、语气和写作风格的组合。作为一个数据分析师,更重要的是要了解我们的情感,它到底意味着什么?让我们继续学习
- 解密TF-IDF:打开文本分析的黑匣子
散一世繁华,颠半世琉璃
人工智能python人工智能
1.TF-IDF概述TF-IDF,全称是“TermFrequency-InverseDocumentFrequency”,中文意为“词频-逆文档频率”。这是一种在信息检索和文本挖掘中常用的加权技术。TF-IDF用于评估一个词语对于一个在语料库中的文件集或一个语料库中的其中一份文件的重要程度。它是一种统计方法,用以评估词语对于一个文件集或一个查询库中的其中之一的重要性。其基本思想是:如果某个词语在一
- 【论文笔记】ZOO: Zeroth Order Optimization
xhyu61
学习笔记论文笔记机器学习论文阅读
论文(标题写不下了):《ZOO:ZerothOrderOptimizationBasedBlack-boxAttackstoDeepNeuralNetworkswithoutTrainingSubstituteModels》Abstract深度神经网络(DNN)是当今时代最突出的技术之一,在许多机器学习任务中实现了最先进的性能,包括但不限于图像分类、文本挖掘、语音处理。但人们越来越关注对抗性示例的
- 基于关联规则与可平面图的商品摆放规划-----实验报告
FakeOccupational
数据分析
基于关联规则与可平面图的商品摆放规划摘要:本文先对northwind数据库介绍与数据描述与简单分析(数据异常值处理,订单地址的文本挖掘),然后对购买的商品使用关联规则算法,进行关联分析与商品的购买情况分析,由关联规则的发现结果,使用图论方法分析商品的摆放图。关键词:Northwind数据库;关联规则;可平面图;1.Northwind数据库数据介绍图1Northwind数据库的安装文件执行文件中的S
- 深入理解TF-IDF、BM25算法与BM25变种:揭秘信息检索的核心原理与应用
汀、人工智能
tf-idf人工智能BM25算法NLP自然语言处理检索系统语义搜索
深入理解TF-IDF、BM25算法与BM25变种:揭秘信息检索的核心原理与应用1.文本特征表示方法:TF-IDF在信息检索,文本挖掘和自然语言处理领域,IF-IDF这个名字,从它在20世纪70年代初被发明,已名震江湖近半个世纪而不曾衰歇.它表示的简单性,应用的有效性,使得它成为不同文本处理任务文本特征权重表示的首选方案.如果要评选一个NLP领域最难以被忘记的公式,我想,TF-IDF应该是无可争议的
- 文本挖掘之主题分析的详细介绍
亦旧sea
机器学习人工智能算法
文本挖掘的主题分析是什么文本挖掘的主题分析是指通过计算机自动处理文本数据,识别出文本中的主题和话题。主题指的是文本中的核心概念或议题,而话题则是具体的讨论点或事件。主题分析可以帮助人们快速了解大量文本数据中的内容和趋势,从而支持信息检索、舆情分析、情感分析、知识发现等应用。主题分析的主要方法包括文本聚类、主题模型、关键词提取等。文本挖掘的主题分析的特点是什么,优缺点是什么文本挖掘的主题分析是通过对
- 文本分析之词云图的绘制
亦旧sea
pythonnumpy数据分析
文本分析的词云图是一种可视化方式,用于展示文本中出现频率较高的词汇。词云图通常以词汇的出现频率为基础,将频率较高的词汇在图中显示为较大的字体,频率较低的词汇则以较小的字体显示。通过词云图,可以直观地了解文本的关键词和主题,帮助人们快速抓取文本的主要信息。文本分析的词云图可以应用于多个领域,包括舆情分析、市场研究、文本挖掘等。词云是一种对文本数据进行可视化展示的方式,通过将文本中的关键词以不同字体大
- 文本挖掘之情感分析详细介绍
亦旧sea
人工智能
文本挖掘的情感分析是什么文本挖掘的情感分析是指通过计算机技术和自然语言处理技术,对文本中的情绪、情感进行分析和识别的过程。它的目标是从文本中抽取出作者的情感倾向,通常可以分为正面情感、负面情感和中性情感三类。情感分析可以应用于社交媒体分析、舆情监测、产品评论分析等领域,可以帮助企业了解用户对产品或服务的态度和情感倾向,做出相应的决策和调整。文本挖掘的情感分析的特点是什么,优缺点是什么文本挖掘的情感
- 利用Minitab中的全新Python 集成开启探索之旅
MinitabUG
数据挖掘数据分析人工智能python
现如今,内容无处不在,随时可供访问!尼尔森(Nielsen)的一项研究发现,美国成人每天用于阅读、聆听、观看媒体以及与媒体互动的时间超过11小时。当下大家宅在家中,想必这个数值只会更高。可用内容层出不穷,您或许会想知道:是否存在一种定量方式,让我们能够深入了解可用文本?文本挖掘也称为文本数据挖掘,指的是从文本撷取高质量信息的过程,其终极目标是从文本变量中提取度量数值,供定量建模之用。文本挖掘为何重
- Python中的自然语言处理和文本挖掘
数据小爬虫
电商apiapipython自然语言处理easyuijava开发语言笔记人工智能
在Python中,自然语言处理(NLP)和文本挖掘是两个密切相关的领域,它们都涉及到对人类语言的处理和分析。下面我们将分别介绍这两个领域,以及如何使用Python进行自然语言处理和文本挖掘。一、自然语言处理(NLP)自然语言处理是一种让计算机理解和生成人类语言的技术。在Python中,有许多库可用于进行自然语言处理,其中最常用的是NLTK(NaturalLanguageToolkit)和spaCy
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的