电阻:是某种材料所固有的,在一定程度上阻碍电流通过,并将所消耗的电能转化为热能的一种物理性质。
电阻器:在电路中起电阻性能的电子元件。
电阻值:衡量某种该材料物体电阻性能大小的一个物理量。
电阻单位:欧姆。
其他常用的有:太欧(TΩ),吉欧(GΩ), 兆欧(MΩ), 千欧(KΩ),毫欧(mΩ),纳欧(nΩ)皮欧(pΩ)的标识,其换算公式如下:
1TΩ=1000 GΩ; 1GΩ=1000 MΩ;1MΩ=1000;1KΩ=1000Ω;1Ω=1000mΩ;1 mΩ=1000nΩ; 1nΩ=1000pΩ;
电阻器的英文缩写:R,排阻(RN)
2.1.1固定电阻器:
不能调节的,我们称之为定值电阻或固定电阻。
2.1.2可调电阻器:
阻值可以调节的,我们称之为可调电阻.常见的可调电阻是滑动变阻器,例如收音机音量调节的装置是个圆形的滑动变阻器,主要应用于电压分配的,我们称之为电位器。
2.2.1薄膜电阻
用蒸发的方法将一定电阻率材料蒸镀于绝缘材料表面制成。主要如下:
a碳膜电阻器
碳膜电阻(碳薄膜电阻)为最早期也最普遍使用的电阻器,利用真空喷涂技术在瓷棒上面喷涂一层碳膜,再将碳膜外层加工切割成螺旋纹状,依照螺旋纹的多寡来定其电阻值,螺旋纹越多时表示电阻值越大。最后在外层涂上环氧树脂密封保护而成。其阻值误差虽然较金属皮膜电阻高,但由于价钱便宜。碳膜电阻器仍广泛应用在各类产品上,是目前电子,电器,设备,资讯产品之最基本零组件。
b 金属膜电阻器。
金属膜电阻(金属拍摄电阻)同样利用真空喷涂技术在瓷棒上面喷涂,只是将炭膜换成金属膜(如镍铬),并在金属膜车上螺旋纹做出不同阻值,并且于瓷棒两端度上贵金属。虽然它较碳膜电阻器贵,但低杂音,稳定,受温度影响小,精确度高成了它的优势。因此被广泛应用于高级音响器材,电脑,仪表,国防及太空设备等方面。
c 金属氧化膜电阻器
某些仪器或装置需要长期在高温的环境下操作,使用一般的电阻会未能保持其安定性。在这种情况下可使用金属氧化膜电阻(金属氧化物薄膜电阻器),它是利用高温燃烧技术于高热传导的瓷棒上面烧附一层金属氧化薄膜(用锡和锡的化合物喷制成溶液,经喷雾送入500~500℃的恒温炉,涂覆在旋转的陶瓷基体上而形成的。材料也可以氧化锌等),并在金属氧化薄膜车上螺旋纹做出不同阻值,然后于外层喷涂不燃性涂料。其性能与金属膜电阻器类似,但电阻值范围窄。它能够在高温下仍保持其安定性,其典型的特点是金属氧化膜与陶瓷基体结合的更牢,电阻皮膜负载之电力亦较高。耐酸碱能力强,抗盐雾,因而适用于在恶劣的环境下工作。它还兼备低杂音,稳定,高频特性好的优点。
d合成膜电阻
将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压,高阻,小型电阻器。
2.2.2 绕线电阻
用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。绕线电阻具有较低的温度系数,阻值精度高,稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。
方形线绕电阻
方形线绕电阻(钢丝缠绕电阻)又俗称为水泥电组,采用镍,铬,铁等电阻较大的合金电阻线绕在无碱性耐热瓷件上,外面加上耐热,耐湿,无腐蚀之材料保护而成,再把绕线电阻体放入瓷器框内,用特殊不燃性耐热水泥充填密封而成。而不燃性涂装线绕电阻的差别只是外层涂装改由矽利康树脂或不燃性涂料。它们的优点是阻值精确,低杂音,有良好散热及可以承受甚大的功率消耗,大多使用于放大器功率级部份。缺点是阻值不大,成本较高,亦因存在电感不适宜在高频的电路中使用。
2.2.3 无感电阻
无感电阻常用于做负载,用于吸收产品使用过程中产生的不需要的电量,或起到缓冲,制动的作用,此类电阻常称为JEPSUN制动电阻或捷比信负载电阻。
2.2.4 实芯碳质电阻
用碳质颗粒壮导电物质、填料和粘合剂混合制成一个实体的电阻器。 并在制造时植入导线。电阻值的大小是根据碳粉的比例及碳棒的粗细长短而定。 特点:价格低廉,但其阻值误差、噪声电压都大,稳定性差,目前较少用。
2.2.5金属玻璃铀电阻
将金属粉和玻璃铀粉混合,采用丝网印刷法印在基板上。耐潮湿,高温,温度系数小,主要应用于厚膜电路。贴片电阻(片式电阻)是金属玻璃铀电阻的一种形式,它的电阻体是高可靠的钌系列玻璃铀材料经过高温烧结而成,特点是体积小,精度高,稳定性和高频性能好,适用于高精密电子产品的基板中。而贴片排阻则是将多个相同阻值的贴片电阻制作成一颗贴片电阻,目的是可有效地限制元件数量,减少制造成本和缩小电路板的面积。 这种贴片电阻主要分为厚膜与薄膜。贴片厚膜电阻:厚膜电阻电路一般采用丝网印刷工艺,膜厚一般大于10μm。厚膜电阻一般精度较差10%,5%,1%是常见精度,同时厚膜电阻的温度系数上很难控制。贴片薄膜电阻:采用真空蒸发、磁控溅射的方法将一定电阻率材料蒸镀于绝缘材料表面制成一种电阻器,膜厚一般小于10μm。由于材料和工艺上的差别,薄膜电阻的精度较高可以做到0.1%,0.05%,0.25%,0.5%等精度。温度系数也比较好。
是一种对温度反应比较敏感,阻值会随温度的变化的非线性电阻器,通常由单晶、多晶等半导体材料制成。在电路中用RT表示。
A正温度系数热敏电阻:也称PTC,属于直热式热敏电阻。正温度系数热敏电阻在常温下阻值很小,当流经它的电流超过额定值时,其阻值随温度的升高而增大。
B 负温度系数热敏电阻:也称NTC热敏电阻。其主要特性是电阻值与温度变化成反比。
压敏电阻器简称VSR,是一种对电压敏感的非线性过电压保护半导体元件,在电路中用RV表示。普通电阻遵守欧姆定律,而压敏电阻的电压与电流则呈现特殊的非线性关系。当压敏电阻器两端所加电压低于标称电压时,其阻值呈现无穷大,内部几乎无电流流过。当压敏电阻器两端所加电压高于标称电压时,压敏电阻器迅速击穿导通,由高阻状态变为低阻状态,工作电流急剧增大。当两端电压又低于标称值时,压敏电阻器又恢复高阻状态。当两端所加电压超过局限值时,压敏电阻将完全击穿损坏,无法自行恢复。压敏电阻应用在过压保护、防雷击、尖峰吸收回路、限幅、等电路。
光敏电阻是一种对光敏感的元件,它的阻值随外界光照强弱变化而变化。在无光照时呈高阻状态,有光照时阻值减小。光敏电阻在电路中“RL或RG”表示。他一般应用在自动照明、自动报警等电路中。
湿敏电阻是一种对环境湿度敏感的元件,它的阻值随环境湿度变化而变化。它分正湿度特性电阻(湿度增大电阻值增大)和负湿度特性电阻(湿度增大电阻值减小)。在电路中他用"RS"表示。常用 与湿度检测器中做传感器。
磁敏电阻是一种对磁场敏感的半导体元件,他可以将磁感应信号转换成电信号。他的阻值随磁场的变化而变化。
气敏电阻是一种对特殊气体敏感的原价爱你,他可以将被测气体的浓度和成分信号转变相应的电信号。广泛应用在可燃气体、有害气体的检测中。
力敏电阻是一种能将机械力转变为电信号的特殊元件。其电阻随外加力大小而改变。主要用在压力传感器上。
3.1、直标法:
用数字和单位符号在电阻器表面标出阻值,其允许误差直接用百分数表示,若电阻上未注偏差,则均为±20%。
3.2、文字符号法:
用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差也用文字符号表示。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值。
3.3、数码法:
在电阻器上用三位数码表示标称值的标志方法。数码从左到右,第一、二位为有效值,第三位为指数,即零的个数,单位为欧。
例:“223”表示22000Ω,即22KΩ±5%
“102”表示1000Ω,即1KΩ ±5%
3.4、色标法:
用不同颜色的带或点在电阻器表面标出标称阻值和允许偏差。国外电阻大部分采用色标法。
色环含义:前面依次是有效数字,最后一环是允许误差,最后前一环为乘数。当电阻为四环时,前两位为有效数字, 第三位为乘方数,第四位为偏差。 当电阻为五环时,前三位为有效数字, 第四位为乘方数, 第五位为偏差。如下图
封装与尺寸如下表:
注释: 由封装可得元件封装的长,宽尺寸 。方法:前两位一组,后两位一组分别除以4即可得元件封装大致长和宽,单位为毫米
是指在70℃环境温度下进行耐久性试验,而且组织变化不超过该试验的允许值时所允许的最大功耗。各规格尺寸的额定功率下表所示。 需要注意的是,有些尺寸的功率是可以兼容的,比如0603在某些阻值范围内可以做到1/10W,在这种情况下一定要参考生产厂家的规格书及相关技术资料。
英制(mil) 公制(mm) 额定功率(W)@ 70°C
0201 0603 1/20W
0402 1005 1/16W
0603 1608 1/10W, (1/16W)
0805 2012 1/8W,(1/10W)
1206 3216 1/4W,(1/8W)
1210 3225 1/3W, (1/4W)
1812 4832 1/2W,
2010 5025 3/4W,( 1/2W)
2512 6432 1W
贴片电阻生产过程采用激光调阻,加之其电阻膜是高稳定的玻璃釉材料,因此贴片电阻的精度比较高,最普通阻值系列的是E24系列,即±5%的偏差;另外还比较常用的E96阻值系列(即±1%的偏差),称做精密贴片电阻;也有极少数场合用到的E192系列(即±0.5%精度的);其他系列基本不采用。
贴片电阻的阻值一般标注在电阻体表面上,阻值代码规则如下:
E24系列: 两位有效数字+零的个数
E96系列: 三位有效数字+零的个数
举例如下:
需要指出的是在贴片电阻的中零欧姆电阻的应用很广泛,应用时注意各尺寸片阻允许的额定电流这一参数。
该参数是指可以连续施加在电阻两端的最大直流电压或交流有效值电压;元件极限电压取决于电阻器的尺寸和制造工艺。一般情况下该参数不被提起,但是在进行环境试验时必须参考此参数。
电阻的阻值随着工作温度的变化而变化,这种变化用温度系数来表达,单位是ppm/℃。这种变化对电路的工作稳定性将产生不良影响,电路要求越高,选用的电阻温度系数越小,特别是作为基准电压和提供工作点的电阻,更应该注意这一点。贴片电阻的温度系数比较小,大概在(100~500)ppm/℃,选用时注意参考厂家提供的技术资料。 各尺寸规格及阻值段温度系数可以不同,这些一定注意。
电阻器在电子电路中起阻碍电流作用的元器件,其工作原理为电能转化为热能来实现限流限压的功能。
分压电路实际上是电阻的串联电路,如图所示,它有以下几个特点:
①通过各电阻的电流是同一电流,即各电阻中的电流相等、I = I1 = I2 = I3;
②,在串联电路中,电阻大的导体,它两端的电压也 大,电压的分配与导体的电阻成正比,因此,导体串联具有分压作用。,总电压等于各电阻上的电压降之和,,即V= V1 + V2 + V3;
③总电阻等于各电阻之和,即R=R1 +R2+R3:
2. 分流电路实际上是电阻器的并联电路,如图所示。它有以下几点特点:
①各支路的电压等于总电压;
②总电流等于各支路电流之和,即I = I1 + I2 + I3;
③总电阻的倒数等于各支路倒数之和,即1/R =1/R1 + 1/R2 + 1/R3
在实践中经常利用电阻器的并联电路组成分流电路,以对电路中的电流进行分配
如下图所示由电阻器组成的阻抗匹配衰减器、它接在特性阻抗不同的两个网络中间,可以起到匹配阻抗的作用。匹配器中电阻器的阻值可由下式确定,
即式中,Z1和Z2为网络1和网络2的阻抗,它们分别为300Ω和75Ω。将它们代入上面两个公式中,则求得RI=259.8Ω,R2=86.6Ω。
5.4.1、上拉电阻的作用:
1、当 TTL 电路驱动 COMS 电路时,如果 TTL 电路输出的高电平低于COMS电路的最
低高电平(一般为 3.5V),这时就需要在 TTL 的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在 COMS 芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,来提供泄荷的通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5.4.2、上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑 以上三点,通常在 1k 到10k 之间选取。对下拉电阻也有类似道理。
下拉电阻同理
1、做为跳线使用。
2、在数字和模拟等混合电路中,往往要求两个地分开,并且单点连接。我们可以用一个0欧的电阻来连接这两个地,而不是直接连在一起。这样做的好处就是,地线被分成了两个网络,在大面积铺铜等处理时,就会方便得多。
3、做保险丝用。由于PCB上走线的熔断电流较大,如果发生短路过流等故障时,很难熔断,可能会带来更大的事故。由于0欧电阻电流承受能力比较弱(其实0欧电阻也是有一定的电阻的,只是很小而已),过流时就先将0欧电阻熔断了,从而将电路断开,防止了更大事故的发生。
4、想测某部分电路的耗电流的时候,可以去掉0ohm电阻,接上电流表,这样方便测耗电流。
5、在布线时,如果实在布不过去了,也可以加一个0欧的电阻
6、在高频信号下,充当电感或电容。(与外部电路特性有关)电感用,主要是解决EMC问题。如地与地,电源和IC Pin间。