- 景联文科技提供高质量文本标注服务,驱动AI技术发展
景联文科技
科技人工智能
文本标注是指在原始文本数据上添加标签的过程,这些标签可以用来指示特定的实体、关系、事件等信息,以帮助计算机理解和处理这些数据。文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强机器学习和深度学习模型对文本内容的理解能力。标注类型情感分析情感极性:确定文本表达的情感倾向,如正面、负面或中立。强度评估:衡量情感的强烈程度,从轻微到极端不等。命名实
- mysql数据库学号数据类型_MySQL数据库学习笔记(二)----MySQL数据类型
艾萨里昂之光
mysql数据库学号数据类型
【正文】上一章节中,我们学习了MySQL软件的安装,既然软件都装好了,现在就正式开始MySQL的基础知识的学习吧,即使是零基础,也要一步一个脚印。恩,首先要学习的就是MySQL的数据类型。一、数据类型:1、整型(xxxint)2、浮点型(float和double)3、定点数(decimal)4、字符串(char,varchar,xxxtext)5、二进制数据(xxxBlob)6、日期时间类型二、数
- 学习笔记——GPU
鹤岗小串
gpu算力分布式信息与通信系统架构硬件架构运维笔记
本文为学习笔记,故只对知识点依据自己的理解作概要总结,方便以后复习激活记忆。注:本文中GPU的讲解以A100型号为例,V100跟A100的架构差别不大也可适用,但是其他架构可能会有所出入。一、GPU硬件结构NVIDIAA100GPU的硬件结构HBM2:显存MemoryController:负责控制HBM2和L2Cache之间的通信High-SpeedHub:GPU总线,将NVLink、PCIE、E
- 景联文科技:以高质量数据标注推动人工智能领域创新与发展
景联文科技
科技人工智能数据标注
在当今这个由数据驱动的时代,高质量的数据标注对于推动机器学习、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。数据标注过程涉及对原始数据进行加工,通过标注特定对象的特征来生成能够被机器学习模型识别和使用的编码格式,从而使数据更具有意义和可解读性。数据标注的主要类型包括:图像标注:指在图片中标识出目标物体的位置、形状或类别等信息,如自动驾驶技术中的行人、车辆及交通标志的识别。文本
- 客服机器人怎么才能精准的回答用户问题?
玩人工智能的辣条哥
AI面试机器人客服机器人
环境:客服机器人问题描述:客服机器人怎么才能精准的回答用户问题?解决方案:客服机器人要精准回答用户问题,需综合技术、数据和用户体验等多方面因素。以下是关键策略和步骤:1.精准理解用户意图自然语言处理(NLP)技术分词与实体识别:提取关键词(如“订单号”“退货”)和实体(如时间、地点)。意图分类:通过机器学习模型(如BERT、Transformer)将问题归类(如“售后”“支付”)。上下文理解记录对
- 侯捷 C++ 课程学习笔记:深入掌握 C++ 高阶特性 —— 实践与心得分享
清水白石008
C++学习笔记课程教程c++学习笔记
侯捷C++课程学习笔记:深入掌握C++高阶特性——实践与心得分享自从开始接触侯捷C++系列精品课程以来,我对C++语言有了全新的认识与深入理解。这套课程不仅系统地梳理了C++的基础知识,更从实际案例中展示了许多高阶特性和工程实战技巧。作为一名长期从事C++开发的专业人士,我深深感受到侯捷老师讲解中那种由浅入深、逻辑严密的魅力,也正是这种教学风格让我在短时间内掌握了不少难以琢磨的知识点。今天,我将结
- OpenCV 4.2.0与扩展模块安装与应用指南
土城三富
本文还有配套的精品资源,点击获取简介:OpenCV4.2.0是一个先进的计算机视觉库,包含了图像处理、计算机视觉和机器学习算法。本压缩包包含OpenCV核心库和扩展模块(opencv_contrib),版本均为4.2.0。该版本引入了性能增强、API优化以及对深度学习框架和硬件加速技术的更新支持。扩展模块提供了额外的实验性算法和功能,有助于研究和开发新算法。指南详细介绍了如何安装和配置这些库,并提
- OpenCV ML 模块使用指南
ice_junjun
OpenCVopencv人工智能计算机视觉
一、模块概述OpenCV的ML模块提供了丰富的机器学习算法,可用于解决各种计算机视觉和数据分析问题。本指南将详细介绍该模块中主要的机器学习算法,包括支持向量机(SVM)、K均值聚类(K-Means)和神经网络(ANN),并结合图像分类和聚类分析这两个典型应用场景进行代码实现与解释。二、主要函数及类详解(一)支持向量机(SVM):cv.ml.SVM_create()功能支持向量机(SVM)是一种强大
- 强化学习中策略网络模型设计与优化技巧
数字扫地僧
计算机视觉深度学习
I.引言强化学习(ReinforcementLearning,RL)是一种通过与环境交互,学习如何采取行动以最大化累积奖励的机器学习方法。策略网络(PolicyNetwork)是强化学习中一种重要的模型,它直接输出动作的概率分布或具体的动作。本篇博客将深入探讨策略网络的设计原则、优化技巧,并结合具体实例展示其应用。II.策略网络的基本概念A.策略网络的定义策略网络是一种神经网络,它接受当前状态作为
- 达梦数据库学习笔记
lwq979991632
数据库
达梦数据库学习资料一、操作系统安装1、配置信息CPU:4核心内存:4G网络:NAT2.安装包选择选择带GUI的服务器,勾选Java平台、KDE二、安装前准备1.数据库远程访问:关闭防火墙systemctlstopfirewalld(禁用)systemctldisablefirewalld(停止,关闭开机自启动)systemctlstatusfirewalld(查看状态)2.安装gcc包rpm-qa
- 基于Python编程语言实现“机器学习”,用于车牌识别项目
我的sun&shine
Pythonpython机器学习计算机视觉
基于Python的验证码识别研究与实现1.摘要验证码的主要目的是区分人类和计算机,用来防止自动化脚本程序对网站的一些恶意行为,目前绝大部分网站都利用验证码来阻止恶意脚本程序的入侵。验证码的自动识别对于减少自动登录时长,识别难以识别的验证码图片有着重要的作用。对验证码图像进行灰度化、二值化、去离散噪声、字符分割、归一化、特征提取、训练和字符识别等过程可以实现验证码自动识别。首先将原图片进行灰度化处理
- DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略
一个处女座的程序猿
资深文章(前沿/经验/创新)DataScienceML数据科学数据科学的生命周期机器学习
DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略导读:本文章是博主在数据科学和机器学习领域,先后实战过几百个应用案例之后的精心总结,应该是完全覆盖了数据科学的整个生命周期及其各个阶段的要点。其中机器学习领域六大阶段更是在整个数据科学生命周期中扮演着极其重要的角色。同时,因为涉及到博主出书中出版社要求在
- 【Azure 架构师学习笔记】- Azure Networking(1) -- Service Endpoint 和 Private Endpoint
發糞塗牆
Azure架构师学习笔记Azure网络安全azureNetwork
本文属于【Azure架构师学习笔记】系列。本文属于【AzureNetworking】系列。前言最近公司的安全部门在审计云环境安全性时经常提到serviceendpoint(SE)和priavateendpoint(PE)的术语,为此做了一些研究储备。云计算的本质就是网络,默认情况下资源间及外部都是通过公网也就是互联网访问。为了安全,Azure引入了SE和PE等服务。云环境网络流动主要有两个:inb
- 计算机基础:编码02,有符号数编码,原码
水饺编程
MFC学习笔记Win32学习笔记c++windowsmfcc语言
专栏导航本节文章分别属于《Win32学习笔记》和《MFC学习笔记》两个专栏,故划分为两个专栏导航。读者可以自行选择前往哪个专栏。(一)WIn32专栏导航上一篇:计算机基础:编码01,无符号数编码回到目录下一篇:计算机基础:编码03,根据十进制数,求其原码(二)MFC专栏导航上一篇:计算机基础:编码01,无符号数编码回到目录下一篇:计算机基础:编码03,根据十进制数,求其原码本节前言上一节,我是讲解
- 「Kubernetes Objects」- Service(学习笔记) @20210227
k4nzdroid
Service,服务,用于暴露Pod以供访问。官方文档及手册KubernetesAPIv1.18/Servicev1coreService?Pod会被创建,并且还会消失,这由ReplicaSets控制。每个Pod都有自己的IP地址,但是这些IP地址不能视为可靠的。那么,如果前端的一部分Pod依赖于后端的Pod,那前端的这些Pod如何找出并追踪后端的Pod?ServiceService是一个抽象,定
- k8s学习笔记(3)--- kubernetes核心技术概念
梦谜
k8s基础知识k8基本核心概念
kubernetes核心技术概念1.容器(Container)2.API对象3.集群(Cluster)4.Master5.Node6.Pod7.复制控制器(ReplicationController,RC)8.副本集(ReplicaSet,RS)9.部署(Deployment)10.服务(Service)11.任务(Job)12.定时任务(CronJob)13.后台支撑服务集(DaemonSet)
- 关于Go那些懒得看又不得不知道的东西
Hock2024
golang开发语言后端
写在前面当开始学习go,亦或是cpp、还是java向go进行转职,这部分内容都是比较重要的。go的编译环境,模块管理以及一些基本的语法我认为还是很有必要去学习的,因此重新学习了这个部分并且写下下面的学习笔记!如果有写错或者不全面的地方,还希望大家及时纠正和指导。连接环境首先,作为一个后端er,能使用linux系统是必备的技能,这里我建议可以使用Xshell连接云服务器的方案来完成。云服务器建议使用
- 给普通人看的深度学习说明书:用快递系统理解AI如何思考
嵌入式Jerry
PythonAI人工智能深度学习
第一章:理解AI的思维方式(快递版)1.1快递分拣站的故事假设你管理一个快递分拣站:传统方法:手动制定规则(比如根据邮编分拣)机器学习:观察老员工的分拣记录,总结规律深度学习:搭建自动分拣流水线,自主发现隐藏规则1.2神经网络就像智能分拣机传送带(输入层):接收包裹信息(图片像素/文字等)#就像扫描快递单input_data=[0.2,0.7,0.1]#归一化后的特征数据分拣工人(隐藏层):每个工
- 简单理解机器学习中top_k、top_p、temperature三个参数的作用
无级程序员
机器学习人工智能
在机器学习中,top_k、top_p和temperature是用于控制生成模型(如语言模型)输出质量的参数,尤其在文本生成任务中常见。然而,网上文章很多很全,但大多晦涩难懂,今天我们来用最简单的语言谈谈它们的具体作用:1.点菜式筛选法:top_k参数英文全称:top-k中文名称:前k个具体意义:top_k参数就像是你在餐厅点菜时,服务员只给你推荐菜单上前k名的招牌菜。在AI文本生成中,top_k参
- Eagle_Wood-滤波方式学习笔记
OverflowSummer
嵌入式泛用知识学习笔记人工智能算法嵌入式硬件笔记学习
//1.移动平均滤波器(信号处理)#defineWINDOW_SIZE5floatmoving_average(float*buffer,floatnew_sample){ staticfloatsum=0; staticintindex=0; staticfloatsamples[WINDOW_SIZE]={0}; sum-=samples[index]; samples[ind
- 小白零基础学数学建模系列-引言与课程目录
川川菜鸟
数学建模小白到精通系列数学建模
目录引言一、我们的专辑包含哪些内容?第一周:数学建模基础与工具第二周:高级数学建模技巧与应用第三周:机器学习基础与数据处理第四周:监督学习与无监督学习算法第五周:神经网络二、学完本专辑能收获到什么?三、适合什么样的人群学习?四、如何学习本专辑?课程目录第1周:数学建模基础与工具第1天:数学建模入门介绍第2天:数学建模工具介绍第3天:线性回归与曲线拟合第4天:线性规划第5天:动态规划第2周:高级数学
- AWS SAP学习笔记-概念
HainesFreeman
AWSaws
1、什么是ETL应用程序,举个例子说明?ETL(Extract,Transform,Load)应用程序是一种用于数据处理和迁移的工具或程序,它主要负责从多个数据源提取数据,对数据进行转换和清洗,然后将处理后的数据加载到目标数据仓库或数据库中。ETL应用程序广泛应用于数据集成、数据仓库构建、数据分析和数据迁移等场景。ETL的三个主要步骤:Extract(提取):从各种数据源(如数据库、文件、API等
- 初始OpenCV
指尖下的技术
OpenCVopencv人工智能计算机视觉
OpenCV是一个功能强大、应用广泛的计算机视觉库,它为开发人员提供了丰富的工具和算法,可以帮助他们快速构建各种视觉应用。随着计算机视觉技术的不断发展,OpenCV也将会继续发挥重要的作用。OpenCV提供了大量的计算机视觉算法和图像处理工具,广泛应用于图像和视频的处理、分析以及机器学习领域。所以学习人计算机视觉或者图像处理方面的知识,OpenCV是一个要重点学习的工具库。首先介绍一下OpenCV
- 机器学习结合伏羲模型高精度多尺度气象分析与降尺度实现
Hardess-god
WRF算法人工智能
随着人工智能的发展,机器学习技术在气象预报领域展现出巨大潜力。本文详细探讨如何结合机器学习(ML)和伏羲模型进行高精度多尺度气象模拟分析,并提供详细的实现步骤和相关代码。1.研究目标与技术路线目标:结合机器学习模型与伏羲气象模式,实现区域和局地高精度降尺度。技术路线:伏羲模型提供大尺度气象数据和预报使用机器学习模型(如CNN、LSTM、XGBoost)进行降尺度2.数据准备与处理2.1气象数据获取
- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- 人脸识别的一些代码
饿了就干饭
CV相关人脸识别
1、cv2入门函数imread及其相关操作2、(详解)opencv里的cv2.resize改变图片大小Python3、机器学习之人脸识别face_recognition使用4、使用face_recognition进行人脸校准5、简单的人脸识别通用流程示意图(这个看着写的挺好的)6、face_recognition和图像处理中left、top、right、bottom解释7、使用pillow库对图片
- Effective Modern C++ 条款6:auto推导若非己愿,使用显式类型初始化惯用法
举个栗子2
EffectiveModernC++c++
更多C++学习笔记,关注wx公众号:cpp读书笔记Item6:Usetheexplicitlytypedinitializeridiomwhenautodeducesundesiredtypes在Item5中解释了比起显式指定类型使用auto声明变量有若干技术优势,但是有时当你想向左转auto却向右转。举个例子,假如我有一个函数,参数为Widget,返回一个std::vector,这里的bool表
- 探索Python中的集成方法:Stacking
Echo_Wish
Python笔记Python算法python开发语言
在机器学习领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。本文将深入介绍Stacking的原理、实现方式以及如何在Python中应用。什么是Stacking?Stacking,又称为堆叠泛化(StackedGeneralization),是一种模型集成方法,与Bagging和Boosting不同,它并不直
- 【Python】 Stacking: 强大的集成学习方法
音乐学家方大刚
Pythonpython集成学习开发语言
我们都找到天使了说好了心事不能偷藏着什么都一起做幸福得没话说把坏脾气变成了好沟通我们都找到天使了约好了负责对方的快乐阳光下的山坡你素描的以后怎么抄袭我脑袋想的薛凯琪《找到天使了》在机器学习中,单一模型的性能可能会受到其局限性和数据的影响。为了解决这个问题,我们可以使用集成学习(EnsembleLearning)方法。集成学习通过结合多个基模型的预测结果,来提高整体模型的准确性和稳健性。Stacki
- Stacking算法:集成学习的终极武器
civilpy
算法集成学习机器学习
Stacking算法:集成学习的终极武器在机器学习的竞技场中,集成学习方法以其卓越的性能而闻名。其中,Stacking(堆叠泛化)作为一种高级集成技术,更是被誉为“集成学习的终极武器”。本文将带你深入了解Stacking算法的原理和实现,并提供一些实战技巧和最佳实践。1.Stacking算法原理探秘Stacking算法的核心思想是训练多个不同的基模型,并将它们的预测结果作为新模型的输入特征,以此来
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc