- 动态规划——完全背包问题(力扣322: 零钱兑换)
索利亚噶通
动态规划算法
前言这次我们要说的是完全背包问题,还记得下面这张图吗,可以看到01背包问题和完全背包问题的区别在于每种物品的数量01背包问题中每种物品只有一个,只有选与不选两种情况完全背包问题种每种物品有多个,选不选,选多少都是考虑的问题定义:一个背包容积为C,一共N种物品,分别编号0,1,2....i,i+1,.....N-1,第i个物品的重量为weight[i],价值为value[i],每种物品可以选用任意多
- [GESP202309 六级] 小杨买饮料
zaiyang遇见
#GESP真题解析算法信息学奥赛程序设计竞赛GESPCSPJ/SC/C++
文章目录题目描述输入格式输出格式输入输出样例#1输入#1输出#1输入输出样例#2输入#2输出#2输入输出样例#3输入#3输出#3说明/提示提交链接解析搜索的想法(80分)01背包的想法(60分)01背包的变形(100分)题目描述小杨来到了一家商店,打算购买一些饮料。这家商店总共出售NNN种饮料,编号从000至N−1N-1N−1,其中编号为iii的饮料售价cic_ici元,容量lil_ili毫升。小
- 动态规划之背包问题(01背包,完全背包,多重背包,分组背包)
Fansv587
动态规划算法经验分享python
0、1背包问题概述0-1背包问题是一个经典的组合优化问题,属于动态规划算法的典型应用场景。该问题描述如下:有一个容量为C的背包,以及n个物品,每个物品有对应的重量wiw_iwi和价值vi(i=1,2...n)v_i(i=1,2...n)vi(i=1,2...n)。对于每个物品,我们只有两种选择:要么将其放入背包,要么不放入,即“0-1”选择(选是1,不选是0)。目标是在不超过背包容量的前提下,选择
- Leetcode416.分割等和子集(01背包问题)
凤梨No.1
leedcode刷题背包问题javaleetcode动态规划
416.分割等和子集题目方法一——动态规划(01背包问题)方法二——背包问题(空间复杂度将为O(n))题目给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。注意:每个数组中的元素不会超过100数组的大小不会超过200示例1:输入:[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11].示例2:输入:[1,2,3,5]输出:false
- 【C++动态规划 状压dp】1879. 两个数组最小的异或值之和|2145
闻缺陷则喜何志丹
c++动态规划力扣算法动态规范最小数组
本文涉及知识点C++动态规划状态压缩dpLeetCode1879.两个数组最小的异或值之和给你两个整数数组nums1和nums2,它们长度都为n。两个数组的异或值之和为(nums1[0]XORnums2[0])+(nums1[1]XORnums2[1])+…+(nums1[n-1]XORnums2[n-1])(下标从0开始)。比方说,[1,2,3]和[3,2,1]的异或值之和等于(1XOR3)+(
- 动态规划入门练习【01背包问题】——洛谷
小白卷不动
c语言的学习动态规划算法
目录P1048[NOIP2005普及组]采药思路01背包问题【思路可以看哔哩哔哩视频哈】附上视频链接吧代码实现【菜鸟本鸟自己写的】P1060[NOIP2006普及组]开心的金明思路跟01背包一样,没什么区别哦视频链接哈哈哈,不过不管怎么说,我还是喜欢二维数组来做,模型其实很固定洛谷试练场普及组动态规划的背包问题_哔哩哔哩_bilibili代码实现P1049[NOIP2001普及组]装箱问题思路洛谷
- 7.4状压DP
赵鑫亿
c++数据结构与算法开发语言DP
在C++中,状态压缩动态规划(StateCompressionDP,简称状压DP)是一种通过二进制位运算高效表示离散状态集合的动态规划方法,特别适用于解决组合优化和排列选择类问题。其核心思想是将多维状态压缩为整数,利用位操作快速进行状态转移。以下是状压DP的详细解析与实战指南:一、状压DP的核心思想状态表示用二进制数的每一位(bit)表示某个元素的存在性或状态。例如:用00101表示第0位和第2位
- 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows(状压DP)
MILLOPE
题解————题解动态规划——动态规划动态规划——状压DP
题目题目描述EachofFarmerJohn’sN(4usingnamespacestd;typedeflonglongLL;templateinlinevoidread(T&s){s=0;Tw=1,ch=getchar();while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}while(isdigit(ch)){s=(s0?a:-a;}intmai
- 01背包(回溯法)
D52013140
#includeusingnamespacestd;intn;intm;intw[101];intv[101];intbest=0;intcw=0;//记录背包中当前的物品重量intcv=0;//记录背包中当前的物品价值ints=0;//记录不拿这个商品剩余的总价值intflag(intt){for(inti=t;i=n)//探索到了叶子结点{if(cv>best)best=cv;return;}
- c++背包九讲之二维费用背包问题
永不为辅
一、背包九讲总述关于动态规划问题,最典型的就是背包九讲,先理解背包九讲后再总结关于动态规划的问题1、01背包问题2、完全背包问题3、多重背包问题4、混合背包问题5、二维费用的背包问题6、分组背包问题7、背包问题求方案数8、求背包问题的方案9、有依赖的背包问题往前四篇博文已经介绍了前四个问题,有需要的同学可以看一下!!二、二维费用背包问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用,选择
- 动态规划-二维费用的背包问题
炙热的大叔
动态规划动态规划算法
文章目录1.一和零(474)2.盈利计划(879)1.一和零(474)题目描述:状态表示:我们之前的01背包问题以及完全背包问题都是一维的,因为我们只有一个要求或者说是限制那就是背包的容量,但是这里不同这题有两个限制,其实和一个限制是类似的,只不过给数组多加上一维而已。因此我们建立三维数组dp[i][j][k]表示我们在前i个二进制字符串中选择,要求选中的字符串中的0以及1字符的总数分别不能超过i
- 代码随想录算法训练营Day38||完全背包问题、leetcode 518. 零钱兑换 II 、 377. 组合总和 Ⅳ 、70. 爬楼梯 (进阶)
jiegongzhu3z
算法leetcode职场和发展
一、完全背包问题相较于01背包,完全背包的显著特征是每个物品可以用无数次,遍历顺序也不需要为了保证每个物品只去一次而倒序遍历。#include#includeusingnamespacestd;intmain(){intN,V;cin>>N>>V;vectorweight(N+1,0);vectorvalue(N+1,0);for(inti=0;i>weight[i]>>value[i];}vec
- 动态规划——01背包问题
一位不愿透露姓名的程序猿
动态规划算法
写在前面:做题博客仅为思路描述自己使用,想到哪写哪。题目:有N件物品和一个容量是V的背包。每件物品只能使用一次(01背包)。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。分析:选定状态数组:dp[i][j]定义为前i个物品在背包总体积为j时的最优装载方法。填dp因为有top_down和bottom_up,所以要按顺序填进
- 分支限界法 01背包 java_分支限界法解决01背包问题
weixin_39530509
分支限界法01背包java
分支限界法和之前讲的回溯法有一点相似,两者都是在问题的解的空间上搜索问题的解。但是两者还是有一些区别的,回溯法是求解在解的空间中的满足的所有解,分支限界法则是求解一个最大解或最小解。这样,两者在解这一方面还是有一些不同的。之前回溯法讲了N后问题,这个问题也是对于这有多个解,但是今天讲的01背包问题是只有一个解的。下面就讲讲分支限界法的基本思想。分支限界法常以广度优先或以最小消耗(最大效益)优先的方
- 01背包与完全背包:正序Or倒叙遍历背包数究竟什么区别
社恐不参团
算法动态规划
01背包与完全背包:正序Or倒叙遍历背包数究竟什么区别第一次写,真的菜鸡的感性理解,如有理解错误之处,希望评论区多多指导刚开始学背包问题,虽然背代码很容易,但是着实蒙蔽此篇小文希望给新手一些帮助,放代码!//01背包问题for(inti=1;i>v>>w;//边输入边处理for(intj=m;j>=v;j--)//倒叙遍历背包数f[j]=max(f[j],f[j-v]
- 再写01背包
计信金边罗
算法c++数据结构
#includeusingnamespacestd;constintN=1e3+10;intf[N][N];inta[N],w[N];intmain(){intn,v;cin>>n>>v;for(inti=1;i>a[i]>>w[i];}f[0][0]=0;for(inti=1;i=a[i]){f[i][j]=max(f[i-1][j],f[i-1][j-a[i]]+w[i]);}else{f[i
- 华为机试HJ16:购物单 系统的动态规划设计思路 剖析Java最优解代码
_JC_Chris
华为动态规划java算法数据结构
0.写在前面“华为机试HJ16:购物单”是一道“物品间有依赖关系”的【01背包问题】,属于经典dp问题的变形。对于基础薄弱的同学来说,本题的思维难度不低,建议先了解“普通01背包问题”的基本求解思路——bilibili辅助学习视频(预计学习时间15min)1.题目描述王强决定把年终奖用于购物,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:主件附件电脑打印
- 代码随想录算法训练营第三十七天-动态规划-完全背包-理论基础
taoyong001
算法动态规划c++leetcode
完全背包与01背包根本区别就是物品的数量完全背包,物品的数量是无限的,可以任意取多个01背包物品的数量则只有一个遍历顺序01背包的一维滚动数组必须要从后向前遍历,这是防止一个物品被多次加入背包中而完全背包就是要多次加入物品,所以遍历自然而然就变成正序遍历了for(intj=weight[i];j<=capacityOfCurrentBag;++j)因为是二层遍历,且这两层遍历可以交换可以交换的本质
- 代码随想录算法训练营第三十六天-动态规划-474.一和零
taoyong001
算法动态规划c++leetcode
背包问题本身就已经够反思维的了,竟然物品会有两个维度的情况,这是闹哪样?题目要求是最大子集的个数题目中的mmm和nnn可以类比为容器,要装潢这个容器,最多要多少个元素的个数,就是结果,这个容器最多有mmm个0,nnn个1这个容器相当于一个背包,这个背包是有两个维度,最多有mmm个0,nnn个1,装潢这个背包最多需要多少个物品给出的数据集就是物品这是一道01背包问题动规五部曲这里要使用一个二维的动规
- 【算法】动态规划:从斐波那契数列到背包问题
杰九
优质文章算法动态规划
【算法】动态规划:从斐波那契数列到背包问题文章目录【算法】动态规划:从斐波那契数列到背包问题1.斐波那契数列2.爬楼梯3.零钱转换Python代码4.零钱兑换II5.组合数dp和排列数dp6.为什么动态规划的核心思想计算组合数的正确方法代码实现为什么先遍历硬币再遍历金额可以计算组合数详细解释举例说明最终结果具体组合情况为什么有效7.背包问题01背包问题定义完全背包问题定义示例为什么需要倒序遍历8.
- [前端算法]动态规划
摇光93
算法算法动态规划
最优子结构,重叠子问题爬楼梯递归+记忆化搜索自顶向下varclimbStairs=function(n){letmap=[]functiondfs(n){if(n=coins[j]){dp[i]=Math.min(dp[i],dp[i-coins[j]]+1);}}}if(dp[amount]===Infinity){return-1;}returndp[amount];}01背包问题functi
- 2022.1.10 学习总结
山城有羽
算法c#
今天解出两道洛谷上面的搜索题,分别是“kkksc03考前临时抱佛脚”与“填涂颜色-洛谷”题目:kkksc03考前临时抱佛脚由题目意思可知,该题是要求我们将同一科目的所有“完成习题册”的时间尽可能均衡地分配给左右脑(双核就是强),然后选取各个科目的耗时较多的部分,相加就是正确答案。说起来很简单,就像一道简单的贪心类水题,但实际上需要用到动态规划,主要是解法类似于动态规划里的经典例题“01背包”。(而
- 洛谷P2392 kkksc03考前临时抱佛脚
Gughost
算法c++
为啥贪心不行!每次哪边用时少就把当前最大值放进去,竟然0分仔细想想很容易找出反例最完美的情况肯定是左右脑所用时间相同,各t(总)/2的时间以此可找出反例:54333用01背包解决,找到最接近t/2的情况intmain(){ints[4],sum=0,t[30],p;for(inti=0;i<4;i
- P2392 kkksc03考前临时抱佛脚( 贪心(划掉),dp,01背包 ,思维)
GrittyB
Sloution!!!写这道题目前,先思考一个问题:把一堆数据,分成两组,让这两组的最大值最小如何求解?如果是简单贪心的话,只考虑局部,比如,让当前选择下达到最小,对于2,3,4这组数据我们会分成2,4和3。但这不是最优的。局部最小!=整体最小(很多时候,局部最小的贪心,是简单的线性结构,而不是这样的二选一(二选一可以用dp去写,这题可以dp,但也可以直接去推导))从整体出发:想一下,会发现,要让
- ACM刷题——背包问题
Nancy_627
ACM刷题acm竞赛算法
ACM刷题练习——背包问题01背包问题(Java解法)有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数vi,wi,用空格隔开,分别表示第i件物品的体积和价值。输出格式输出一
- 力扣494-目标和(Java详细题解)
Calebcode.
重生之我在lc刷算法leetcodejava算法
题目链接:494.目标和-力扣(LeetCode)前情提要:因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。最近刚学完01背包,所以现在的题解都是以01背包问题为基础再来写的。如果大家不懂01背包的话,建议可以去学一学,01背包问题可以说是背包问题的基础。如果大家感兴趣,我后期可以出一篇专门讲解01背包问题。dp五部曲。1.确定dp数组和i下标的含义。2.确定递推公式。3.dp初始化。
- 完全背包求方案总数
朴小明
动态规划素数筛动态规划求解
洛谷P1832A+BProblem(再升级)给定一个正整数n,求将其分解成若干个素数之和的方案总数。这题和P1164小A点菜很像,但是那题是01背包,这题是完全背包。#include#include#include#include#include#defineintlonglongusingnamespacestd;constintmaxn=1e3+5;intdp[maxn][maxn],prim
- c++使用动态规划求解01背包问题
苓一在学习
算法c++
-什么是01背包问题?在01背包问题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况。如果不选择将其放入背包中,则不需要处理。如果选择将其放入背包中,由于不清楚之前放入的物品占据了多大的空间,需要枚举将这个物品放入背包后可能占据背包空间的所有情况。需要注意的是:01背包问题不能使用贪心思想,因为每次选取最大的并不能保证背包刚好装满,遇到01背包问题先找到题目中的“背包”和“物品”,
- 01背包问题C++
znyee07
c++c++蓝桥杯c语言动态规划
1.问题简述:有N件物品和一个容量是V的背包,每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大2.朴素解法及优化:定义状态f[i][j]表示:前i件物品当体积不超过j时的所有选法的集合状态方程f[i][j]的状态转移关键在于第i件物品选或不选;不选第i件时f[i][j]=f[i-1][j];选第i件时f[i][j]=
- 个人关于背包问题的总结(一)
Saber—Lily
背包问题总结笔记
一.前言背包问题是动态规划的一个巨大的分支,常见的背包问题都有相对的模版,个人认为如果只是会背板子是下下之策,从长远的角度来看是不可取的,因此我想在这里分享一些个人对于背包问题的理解(会有借鉴其他大牛地方,逃~)同时如果我有一些不正的确的地方也欢迎大家和我交流。希望能加深大家对背包问题的理解,二.01背包问题理解以及常见的例题1.01背包的分析以及理解动态规划(dp)问题的一般求解步骤概括如下1.
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地