import cv2
import numpy as np
#读入图片:默认彩色图,cv2.IMREAD_GRAYSCALE灰度图,cv2.IMREAD_UNCHANGED包含alpha通道
img = cv2.imread('1.jpg')
cv2.imshow('src',img)
print(img.shape) # (h,w,c)
print(img.size) # 像素总数目
print(img.dtype)
print(img)
cv2.waitKey()
opencv读进来的图片已经是一个numpy矩阵了,彩色图片维度是(高度,宽度,通道数)。数据类型是uint8。
#gray = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE) #灰度图
#cv2.imshow('gray',gray)
#也可以这么写,先读入彩色图,再转灰度图
src = cv2.imread('1.jpg')
gray = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)
cv2.imshow('gray',gray)
print(gray.shape)
print(gray.size)
print(gray)
cv2.waitKey()
# 图片需要考虑是否存在 路径是否正确两个问题 轮径问题需要用到os模块os.path.isfile
#如何解决“读到的图片不存在的问题”? #加入判断语句,如果为空,做异常处理
img2 = cv2.imread('2.jpg')
if img2 == None:
print('fail to load image!')
opencv读入图片的矩阵格式是:(height,width,channels)。而在深度学习中,因为要对不同通道应用卷积,所以会采取另一种方式:(channels,height,width)。为了应对该要求,我们可以这么做。
#注意到,opencv读入的图片的彩色图是一个channel last的三维矩阵(h,w,c),即(高度,宽度,通道)
#有时候在深度学习中用到的的图片矩阵形式可能是channel first,那我们可以这样转一下
print(img.shape)
img = img.transpose(2,0,1)
print(img.shape)
在深度学习搭建CNN时,往往要做相应的图像数据处理,比如图像要扩展维度,比如扩展成(batch_size,channels,height,width),有的框架比如tf,keras他们需要的格式不一样的。
对于这种要求,我们可以这么做。
#有时候还要扩展维度,比如有时候我们需要预测单张图片,要在要加一列做图片的个数,可以这么做
img = np.expand_dims(img, axis=0)
print(img.shape)
上面提到的是预测阶段时预测单张图片的扩展维度的操作,如果是训练阶段,构建batch,即得到这种形式:(batch_size,channels,height,width)。我一般喜欢这么做
data_list = []
loop:
im = cv2.imread('xxx.png')
data_list.append(im)
data_arr = np.array(data_list)
这样子就能构造成我们想要的形式了。
归一化到0~1之间
#因为opencv读入的图片矩阵数值是0到255,有时我们需要对其进行归一化为0~1
img3 = cv2.imread('1.jpg')
img3 = img3.astype("float") / 255.0 #注意需要先转化数据类型为float
print(img3.dtype)
print(img3)
#存储图片
cv2.imwrite('test1.jpg',img3) #得到的是全黑的图片,因为我们把它归一化了
#所以要得到可视化的图,需要先*255还原
img3 = img3 * 255
cv2.imwrite('test2.jpg',img3) #这样就可以看到彩色原图了
opencv读出来图片是BGR,matplotlab读出来是RGB的,可以通过cvColor来转换。
#访问像素
print(img4[10,10]) #3channels
print(gray[10,10]) #1channel
img4[10,10] = [255,255,255]
gray[10,10] = 255
print(img4[10,10]) #3channels
print(gray[10,10]) #1channel
#roi操作
roi = img4[200:550,100:450,:]
cv2.imshow('roi',roi)
cv2.waitKey()
#分离通道
img5 = cv2.imread('1.jpg')
b,g,r = cv2.split(img5)
#合并通道
img5 = cv2.merge((b,g,r))
#也可以不拆分
img5[:,:,2] = 0 #将红色通道值全部设0
from PIL import Image
import numpy as np
img = Image.open('1.jpg')
print(img.format)
print(img.size) #注意,省略了通道 (w,h)
print(img.mode) #L为灰度图,RGB为真彩色,RGBA为加了透明通道
img.show() # 显示图片
PIL读进来的图像是一个对象,而不是我们所熟知的numpy 矩阵。
gray = Image.open('1.jpg').convert('L')
gray.show()
#读取不到图片会抛出异常IOError,我们可以捕捉它,做异常处理
try:
img2 = Image.open('2.jpg')
except IOError:
print('fail to load image!')
#pillow读进来的图片不是矩阵,我们将图片转矩阵,channel last
arr = np.array(img3)
print(arr.shape)
print(arr.dtype)
print(arr)
灰度图的转化与彩图转化一样
#矩阵再转为图像
new_im = Image.fromarray(arr)
new_im.save('3.png')
#分离合并通道
r, g, b = img.split()
img = Image.merge("RGB", (b, g, r))
img = img.copy() #复制图像
img3 = Image.open('1.jpg')
roi = img3.crop((0,0,300,300)) #(左上x,左上y,右下x,右下y)坐标
roi.show()
matplotlib是一个科学绘图的包。
import matplotlib.pyplot as plt
import numpy as np
image = plt.imread('1.jpg')
plt.imshow(image)
plt.show()
#也可以关闭显示x,y轴上的数字
image = plt.imread('1.jpg')
plt.imshow(image)
plt.axis('off')
plt.show()
#plt.imread读入的就是一个矩阵,跟opencv一样,但彩图读进的是RGB,与opencv有区别
print(image.shape) # (h,w,c)
print(image.size)
print(image.dtype)
print(image)
im_r = image[:,:,0] #红色通道
plt.imshow(im_r)
plt.show()
#此时会发现显示的是热量图,不是我们预想的灰度图,可以添加 cmap 参数解决
plt.imshow(im_r,cmap='Greys_r')
plt.show()
#再试一试pillow和matplotlib结合
from PIL import Image
im3 = Image.open('1.jpg')
im3 = np.array(im3)
plt.figure(1)
plt.imshow(im3)
plt.axis('off')
#存储图像,注意,必须在show之前savefig,否则存储的图片一片空白
plt.savefig('timo.jpg')
plt.show()
#最后以一个综合例子总结matplotlib最基本的图片显示技巧吧
im_lol1 = plt.imread('lol.jpg')
im_lol2 = plt.imread('1.jpg')
figure = plt.figure(figsize=(20,10)) # 调整显示图片的大小
'''
figsize参数:指定绘图对象的宽度和高度,单位为英寸;dpi参数指定绘图对象的分辨率,
即每英寸多少个像素,缺省值为80。因此本例中所创建的图表窗口的宽度为8*80 = 640像素
'''
plt.axis("off")#不显示刻度
ax = figure.add_subplot(121) # 图片以1行2列的形式显示
plt.axis('off')
ax.imshow(im_lol1) #第一张图
ax.set_title('lol image 1')#给图片加titile
ax = figure.add_subplot(122)
plt.axis('off')
ax.imshow(im_lol2)
ax.set_title('lol image 2')#给图片加titile
plt.savefig('twp.jpg')
plt.show()
这个函数将会在1.20以后被移除,而被imageio.imread代替。这话我理解为原来读出来是numpy,移除后用PIL的函数读取。为什么这么说呢?
1.10以前版本读出来的彩图是三通道,1.20现在用它读出来的是4通道。
并且它读出来的图,不是numpy数组形式。他调用的是PIL的函数。下面是管饭的文档。
from scipy import misc
import matplotlib.pyplot as plt
im = misc.imread('1.jpg') # 读图
print(im.dtype)
print(im.size)
print(im.shape)
misc.imsave('misc1.png',im) # 保存
plt.imshow(im) # 显示图需要借助别人
plt.show()
print(im)
可以看到,有warining,提示我们imread和imsave在后来的版本将会被弃用,叫我们使用imageio.imread和imageio.imwrite。
我们根据她的提示,使用imageio模块进行图片读写,warning也就没有了。
import imageio
im2 = imageio.imread('1.jpg')
print(im2.dtype)
print(im2.size)
print(im2.shape)
plt.imshow(im)
plt.show()
print(im2)
imageio.imsave('imageio.png',im2)
没用过这个模块,返回的是numpy数组
from skimage import io
im = io.imread('1.jpg') # 读图
print(im.shape) # numpy矩阵,(h,w,c)
print(im.dtype)
print(im.size)
io.imshow(im) # 显示图
io.imsave('sk.png',im) # 保存图
print(im)
im2 = io.imread('1.jpg',as_grey=True) #读入灰度图
print(im2.dtype)
print(im2.size)
print(im2.shape)
io.imshow(im2)
io.imsave('sk_gray.png',im2)
io.show()
print(im2)
可以看到,灰度图像的矩阵的值被归一化了,注意注意!
也可以以这种方式获得灰度图:
from skimage import color
im3 = io.imread('1.jpg')
im3 = color.rgb2grey(im3)
print(im3.dtype)
print(im3.size)
print(im3.shape)
io.imshow(im3)
io.show()
'''
skimage.color.rgb2grey(rgb)
skimage.color.rgb2hsv(rgb)
skimage.color.rgb2lab(rgb)
skimage.color.gray2rgb(image)
skimage.color.hsv2rgb(hsv)
skimage.color.lab2rgb(lab)
'''
因为他是也numpy的,所以切图操作的,可以当作numpy数组来处理。