- 4D雷达再上热搜!华为/小米上车
高工智能汽车
自动驾驶人工智能汽车
智驾能力边界的不断抬升,对于传感器的要求仍在增加。去年至今,不管是端到端,还是大模型,本质上并没有解决摄像头(视觉感知)的物理性能缺陷;激光雷达处于成本下降区间,安全冗余作用明显,但对于恶劣天气、穿透能力以及抗干扰性仍存在劣势。而毫米波雷达“全天候全天时”工作的能力恰恰是最好的补充;同时,随着4D成像雷达技术的成熟,也解决了过去一直存在的目标识别精度有限、分辨率低以及高程探测能力有限等问题。尤其是
- 点云从入门到精通技术详解100篇-基于激光雷达点云的三维目标检测
格图素书
目标检测人工智能计算机视觉
目录前言图像目标检测算法研究现状点云目标检测算法研究现状基于投影图的方法基于体素的方法基于点云的多模态融合方法2地面点云滤波及神经网络2.1目标检测数据集及采集设备2.1.1KITTI数据集2.1.2车载激光雷达2.2地面点云滤波算法2.2.1RANSAC算法2.2.2CSF算法本文篇幅较长,分为上下两篇,下篇详见基于激光雷达点云的三维目标检测(续)前言近几年来,在计算机视觉领域,利用深度学习卷积
- 常见的点云数据的获取方式
我是瓦力
点云深度学习计算机视觉人工智能深度学习开发语言
1.激光雷达(LiDAR)获取方式:激光脉冲测距原理:激光雷达通过发射激光脉冲并接收反射信号来测量物体与传感器之间的距离。计算激光脉冲从发射到返回所需的时间,并将其转换为距离,从而生成三维点云数据。常用设备:车载激光雷达(如Velodyne、Ouster)无人机搭载激光雷达地面激光扫描仪(如Leica、Trimble)2.结构光扫描获取方式:投射光栅图案原理:结构光扫描仪向物体表面投射已知图案的光
- 智驾技术全链条解析
TrustZone_
智驾智驾
智驾技术全链条解析(2025年最新版)智驾技术涵盖从环境感知到车辆控制的完整闭环,涉及硬件、算法、数据与系统集成等多个领域。以下结合行业最新进展(截至2025年3月)进行深度拆解:一、感知技术:汽车的“感官系统”多传感器融合架构•核心传感器类型:◦激光雷达:华为ADS3.0采用200米探测距离的激光雷达,实现高精度三维建模,但成本较高(约2500元/颗);◦毫米波雷达:用于穿透雨雾探测,比亚迪天神
- Velodyne16线激光雷达点云数据中的线束(ring)是如何分布的
壹十壹
激光雷达编辑器
将sensor_msgs::PointCloud2转为pcl::PointCloud后的点云数据线束(ring)是从下往上进行递增排序。在下图中线束0为深蓝色,线束1是红色,线束2为淡蓝色,线束3为橘黄色,线束4为绿色,线束6为黄色。(一帧激光雷达点云的强度值在RVIZ中显示的颜色与该帧点云数据中激光雷达强度值的最大值有关)
- Agent 框架与应用
power-辰南
企业级AI项目实战人工智能大模型aiagent
1.1初识Agent:智能体的核心能力AIAgent是一种基于大模型的自主任务执行系统,能够通过感知、决策、规划和执行实现复杂目标的闭环达成。其核心能力可拆解为以下四部分:1.1.1感知能力(Perception)Agent通过多模态输入接口获取环境信息:•数据采集:集成传感器(如自动驾驶的激光雷达)、API(如天气数据接口)、文本/语音交互系统等;•多模态解析:支持文本、图像、语音的联合处理(如
- 点云从入门到精通技术详解100篇-基于背包激光雷达点云在城市公园单木参数提取中的应用
格图素书
人工智能
目录前言国内外发展现状(DevelopmentStatusatHomeandAbroad)背包LiDAR技术及其在林业调查中的应用进展单木胸径提取算法研究现状单木树高提取算法研究现状2背包LiDAR城市公园树木数据采集及预处理2.1测区概况(OverviewTestArea)2.2背包LiDAR数据采集与处理(BackpackLiDARDataAcquisitionand2.2.1背包激光雷达系统
- 强得不像合资车!丰田首款智能车交卷,14万买端到端+激光雷达
量子位
13.98万元,一段式端到端+激光雷达上车铂智3X。城区NOA有路就能开,后续还会OTA「车位到车位」。这…这这这是合资车?叠加权益后,价格还不到14万元???全球第一大车厂丰田,在中国疯狂“补课”后交卷,直接把高阶智驾卷爆了。甚至连支架都跟进了(DOGE):全民智驾元年,智能驾驶已经深入人心。铂智3X上市后也是大热,1小时不到,订单突破了10000台。把服务器都挤爆了:13.98万,丰田卷爆高阶
- [自动驾驶-传感器融合] 多激光雷达的外参标定
simba丶小小程序猿
自动驾驶自动驾驶人工智能机器学习
文章目录引言外参标定原理ICP匹配示例参考文献引言多激光雷达系统通常用于自动驾驶或机器人,每个雷达的位置和姿态不同,需要将它们的数据统一到同一个坐标系下。多激光雷达外参标定的核心目标是通过计算不同雷达坐标系之间的刚性变换关系(旋转矩阵RRR和平移向量ttt),将多个雷达的点云数据统一到同一坐标系下。具体需求包括:数据融合:消除多雷达间的位姿差异,生成全局一致的点云。减少累积误差:避免多传感器数据因
- AUTOSAR从入门到精通-4D毫米雷达波
格图素书
人工智能
目录前言几个高频面试题目4D毫米波雷达会取代激光雷达吗?3D与4D毫米波雷达对比毫米波雷达行业发展历程算法原理几个相关概念雷达毫米波雷达长波vs短波与传统毫米波雷达和激光雷达对比与传统毫米波雷达对比与激光雷达对比与摄像头对比毫米波雷达工作原理毫米波雷达主要应用波段毫米波构成主要功能以及实现方式什么是4D毫米波?4D毫米波雷达市场规模4D毫米波雷达厂商4D毫米波雷达探测性能4D毫米波雷达算法能力现状
- 科技武装到牙齿:小米SU7 Ultra对比SU7的全面进化论
PM简读馆
技术杂谈科技
当价格不再是唯一标尺,SU7Ultra用三电机系统重构性能边界,以3颗激光雷达重写智驾规则,更用900V高压平台和碳纤维车身诠释何为「旗舰天花板」——这场从动力架构到智能神经系统的全面迭代,正在重新定义高端电动轿跑的终极形态。SU7SU7Ultra1、硬件差异动力系统SU7Ultra:搭载超级三电机系统(V8s×2+V6s),综合马力1548PS,零百加速1.98秒(部分资料显示2.1秒),最高时
- SLAM文献之-IMLS-SLAM: scan-to-model matching based on 3D data
点云SLAM
SLAM3d机器学习SLAMIMLSICP
IMLS-SLAM算法原理详解一、算法概述IMLS-SLAM(ImplicitMovingLeastSquaresSLAM)是一种基于3D激光雷达数据的低漂移SLAM算法,由Jean-EmmanuelDeschaud等人在2018年提出。其核心思想是通过隐式移动最小二乘(IMLS)曲面建模实现scan-to-model的匹配框架,显著提升了定位与建图的精度和鲁棒性。该算法在无闭环检测的情况下,4公
- 点云从入门到精通技术详解100篇-基于点云与图像纹理的 道路识别(续)
格图素书
计算机视觉人工智能
目录3.1.2图像滤波去噪3.2道路纹理特征提取3.3基于超像素分割的图像特征表达3.3.1SLIC算法3.3.2改进SLIC算法的超像素特征图获取3.4基于改进区域生长算法的道路区域分割3.4.1种子点的选择3.4.2生长准则3.4.3道路区域后处理3.5实验结果分析4基于激光雷达点云的道路识别4.1点云预处理4.1.1点云数据解析4.1.2点云数据筛选4.1.3点云坐标转换4.2基于雷达图像的
- 点云从入门到精通技术详解100篇-基于多线激光雷达的点云数据处理与导航(续)
格图素书
人工智能算法
目录三维点云建图与定位算法研究§3.1激光SLAM技术§3.2基于特征的建图算法§3.2.1三维点云建图算法简述§3.2.3LeGO-LOAM建图算法§3.3基于点云配准的定位算法§3.3.1点云配准§3.3.2基于ICP的配准定位算法§3.3.3基于NDT的配准定位算法§3.4基于LM法优化的NDT配准定位算法§3.4.1列文伯格-马夸尔特法原理§3.4.2LM-NDT算法配准原理及流程§3.5
- [自动驾驶-传感器融合] 激光雷达的运动补偿
simba丶小小程序猿
自动驾驶人工智能机器学习
文章目录引言相关原理及代码示例IMU运动补偿的基本原理代码示例参考文献引言由于激光雷达成像原理是利用接发器与时间计算来获取光点的位置,所以在传感器的空间运动时,会出现雷达拖影现象(点云畸变),因此需要采用运动补偿来校准激光雷达的点云,本文及介绍下激光雷达的运动补偿原理及实现代码。相关原理及代码示例激光雷达(LiDAR)在运动过程中会产生运动畸变,影响点云的精度。运动补偿的基本原理是通过测量激光在发
- 仿生机器人核心技术与大小脑
天机️灵韵
人工智能具身智能硬件设备机器人人工智能具身智能
以下是针对仿生机器人核心技术的结构化总结,涵盖通用核心技术与**“大脑-小脑”专用架构**两大方向:一、机器人通用核心技术这些技术是仿生机器人实现功能的基础,与生物体的“身体能力”对应:1.感知与交互技术多模态传感器融合视觉:3D视觉(如RGB-D相机)、动态目标跟踪(如光流算法)。触觉:柔性电子皮肤、分布式压力传感器(模仿人类皮肤)。听觉:声源定位、噪声抑制(如麦克风阵列)。环境感知:激光雷达(
- 华为 ADS 3.0 与特斯拉 FSD V12:自动驾驶技术的巅峰对决与未来展望
中科宁图
华为自动驾驶人工智能
一、华为ADS3.0:多传感器融合的卓越代表(一)硬件与技术特色华为ADS3.0智能驾驶系统构建了全面的全息感知体系,融合激光雷达、高清摄像头、毫米波雷达、超声波传感器等多种设备。激光雷达实现环境三维重建和精确测距,在恶劣条件下仍能准确捕捉物体信息;高分辨率摄像头获取视觉信息;毫米波雷达在极端天气下强化对移动物体探测;超声波传感器辅助近距离障碍物检测。GOD网络融合处理多传感器数据,为决策提供坚实
- 无人机图像拼接数据在GIS中的处理与分析、可视化与制图;无人机航拍;无人机生态环境监测、图像处理与GIS数据分析
WangYan2022
遥感生态无人机图像处理数据分析ArcGIS生态环境监测
ArcGIS作为地理信息系统领域最主流的GIS平台软件,空间数据处理和分析功能强大,十分适用于地表空间监测数据的读写、管理、分析与可视化。本教程融合无人机生态环境监测技术和ArcGIS数据分析技术,通过具体案例分析与软件操作实践,详细介绍包括无人机多源遥感影像数据采集(可见光、多光谱、激光雷达等)、影像数据拼接、空间数据编辑、空间数据分析、空间数据专题制图等流程的一条完整作业“流水线”,期望能够为
- 人工智能应用实例-自动驾驶A*算法高级应用
小赖同学啊
人工智能人工智能自动驾驶机器学习
A*算法是一种经典的路径规划算法,在人工智能自动驾驶领域有诸多高级应用,以下为你详细介绍:复杂环境下的路径规划多障碍物与动态障碍物处理:在现实道路场景中,存在着大量的静态障碍物(如建筑物、交通隔离栏)和动态障碍物(如其他行驶的车辆、行人)。A*算法可以通过不断更新地图信息,将动态障碍物的实时位置纳入考虑。例如,车辆的传感器(如激光雷达、摄像头)实时监测周围环境,将障碍物信息反馈给A*算法,算法重新
- 汽车自动驾驶AI
pps-key
人工智能汽车自动驾驶
汽车自动驾驶AI是当前汽车技术领域的前沿方向,以下是关于汽车自动驾驶AI的详细介绍:技术原理感知系统:自动驾驶汽车通过多种传感器(如激光雷达、摄像头、雷达、超声波传感器等)收集周围环境的信息。AI算法对这些传感器数据进行融合处理,构建精确的3D环境模型,使车辆能够“看懂”周围环境,识别行人、车辆、交通标志等。决策系统:基于感知数据,AI通过深度学习、强化学习等算法进行路径规划和决策控制。例如,利用
- 无人机目标追踪技术
kely117
无人机
无人机目标追踪是指通过无人机搭载的传感器和计算系统,实时跟踪和定位特定目标的技术:传感器技术:无人机通常配备摄像头、雷达、激光雷达等传感器,用于捕捉目标的图像和距离信息。图像处理与计算机视觉:通过先进的图像处理和计算机视觉算法,无人机能够从传感器获取的原始数据中提取有用的信息,如目标的位置、形状和运动轨迹。目标识别与跟踪算法:采用机器学习和深度学习算法,无人机能够识别和分类不同的目标,并对目标进行
- (无人驾驶之二)感知层的传感器---LIDAR、GPS、惯性传感器、双目摄像头
abiggg
无人驾驶AI传感器摄像头gps无人机系统
一、LIDAR(光雷达)1.1原理激光雷达对物体距离的测量与通常所说的雷达类似,都是通过测量发送和接受到的脉冲信号的时间间隔来计算物体的距离。因此,由于原理上的相似性,尽管雷达的准确定义是使用微波或无线电波等波长较长的电磁波进行检测测距的设备,激光雷达这一术语仍然被广泛使用。1.2优点与传统雷达相比:采用激光测矩,波长在600~1000nm,测量更加精准,可达厘米级别;可感知物体矩离及表面形状;1
- 无人机的任务载荷指的是什么?看了这篇文你就明白了!!!
云卓SKYDROID
无人机高科技云卓科技无人机载重
传感器载荷包括但不限于:摄像头和光学传感器:如高分辨率摄像头、红外线航空摄影仪、光学/红外成像设备等,用于精准地捕捉图像和数据信息。雷达传感器:如毫米波雷达、合成孔径雷达(SAR)等,能够在夜间和恶劣气候条件下工作,穿透云层、雾和战场遮蔽,进行大范围成像。激光雷达(LiDAR):利用激光束进行探测与测量,不仅可以探测到簇叶下的目标,还可以对目标进行分类,为地面部队提供精确目标信息。多光谱相机:用于
- 自动驾驶领域成长方案
树上求索
自动驾驶人工智能机器学习
一、学习目标成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。二、成长阶段(一)基础理论奠基期(1-2年)专业知识学习:学习数学(高等数学、线性代数、概率论与数理统计、数值分析等),为理解算法和模型提供数学基础;深入研究自动驾驶涉及的专业课程,如控制理论、传感器原理(激光雷达、摄像头、毫米波雷达等)、机器学习(监督学习、无监督学习、深度学习)
- 使用MATLAB进行雷达数据采集可视化
陶瓷好烦
单片机嵌入式硬件
本文使用轮趣科技N10雷达,需要源码可在后台私信或者资源自取1.项目概述本项目旨在通过MATLAB读取N10激光雷达的数据,并进行实时3D点云可视化。数据通过串口传输,并经过解析后转换为三维坐标点,最终使用pcplayer进行动态渲染。该系统可用于环境感知、机器人导航、避障系统等场景。2.代码结构本程序主要由以下几个部分组成:串口初始化:设定串口参数并建立通信连接;数据读取:实时读取雷达数据并进行
- FMCW激光雷达:车载激光雷达的未来之星,赋能ADAS的智能驾驶体验
空间机器人
人工智能
FMCW激光雷达:车载激光雷达的未来之星,赋能ADAS的智能驾驶体验随着自动驾驶技术的快速发展,FMCW激光雷达(频率调制连续波激光雷达)被认为是未来车载雷达技术的核心趋势,尤其在自动驾驶和**高级驾驶辅助系统(ADAS)**中,FMCW雷达表现出卓越的优势。让我们通过一些生动的比喻,来全面理解它如何赋能ADAS,推动智能出行的未来。✨1.精准测距:智能驾驶的眼睛FMCW激光雷达:如同一把超精密的
- AUTOSAR从入门到精通-【应用实战篇】车载HMI-ADAS
林木秀
物联网单片机嵌入式硬件开发语言matlab
目录前言ADAS提供商有哪些1.大陆2.博世3.奥托立夫4.德尔福5.采埃孚&天合6.电装7.法雷奥ADAS级别ADAS功能是如何设计的?传感器的重要性相机雷达激光雷达记录仪上的adas有什么用途?Adas功能及特点1.导航系统(GuidanceSystem)2.实时交通系统(TrafficMessageChannel)3.电子警察系统ISA(Intelligentspeedadaptation或
- 自动驾驶(Automated Driving)系统组成和主要技术--以思维导图形式介绍
大连海事的亲外甥
自动驾驶人工智能机器学习
一、自动驾驶概念介绍自动驾驶是指汽车依靠传感器、高精度地图和复杂的算法等,不需要驾驶员操作而自动完成驾驶的技术。二、自动驾驶系统组成和主要技术架构图思维导图形式绘制1、感知层传感器模块:包括摄像头、激光雷达、毫米波雷达和超声波雷达等,用于获取车辆周围环境的数据,如道路状况、其他车辆、行人和障碍物等。定位传感器模块:包括GNSS(全球导航卫星系统)、INS(惯性导航系统)和视觉SLAM等,用于确定车
- 深度图转点云——从图像到三维场景
MrybHtml
点云
在计算机视觉领域中,深度图转点云是一项重要的任务,它能够将二维深度图像转换为三维点云表示。点云是一种由点构成的数据结构,可以直观地表示三维场景中的物体形状和空间布局。本文将介绍一种常见的方法,并提供相应的源代码,以实现深度图转点云。深度图是一种灰度图像,其中每个像素值代表了该点距离相机的距离。深度图通常使用激光雷达或者结构光等传感器捕捉得到。而点云则是由一系列的三维点组成,每个点都有其在空间中的坐
- 【学习笔记】手把手教你使用Autoware标定SICK-2D激光雷达和相机
Masec
学习笔记Autoware标定二维雷达
2019/06/21更新说明:很多小伙伴反应从github上下载的Autoware没有CalibrationToolkit,是作者在github的新源码和我用的版本不一样了。该教程仅针对2018年11月7日的发布版本。网上Autoware的教程不多,而且都是关于多线的威力登雷达和相机的联合标定。自己摸索使用Autoware标定SICKTIM561单线激光雷达和相机的方法,写一个详细的教程,希望可以
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR