Log4j2阻塞业务线程引发的思考

问题描述

问题1:线上日志打印过多导致的业务线程阻塞

  1. 异步日志打印在ringbuffer满了之后2.7版本的log4j2会默认使用当前线程进行打印日志。
  2. 即使不使用默认的策略,2.9之后已经改为默认的为enqueue方式,也会因为最后队列的打满导致cpu飙高导致业务线程卡顿,2.7中队列使用offer提交日志事件,所以会阻塞
  3. 详细的原因2.7的版本博主已经有文章讲述,此处不再做过多赘述(https://blog.csdn.net/u010597819/article/details/87879802)

问题2:异常线程栈打印使用讨论

首先上官方讨论连接:https://issues.apache.org/jira/browse/LOG4J2-2391

  1. 异常线程栈的打印导致出现了大量的日志线程出现在load class时的锁阻塞
  2. 官网讨论中也指明了ThrowableProxy使用了不正确的CCL(ContextClassLoader)

下面我们分析一下问题的原因

ThrowableProxy使用错误的CCL原因分析

日志详细流程不再赘述,直接从Appender追加日志梳理

/**
 * Actual writing occurs here.
 *
 * @param logEvent The LogEvent.
 */
@Override
public void append(final LogEvent logEvent) {
    if (!isStarted()) {
        throw new IllegalStateException("AsyncAppender " + getName() + " is not active");
    }
    if (!Constants.FORMAT_MESSAGES_IN_BACKGROUND) { // LOG4J2-898: user may choose
        logEvent.getMessage().getFormattedMessage(); // LOG4J2-763: ask message to freeze parameters
    }
    final Log4jLogEvent memento = Log4jLogEvent.createMemento(logEvent, includeLocation);
    if (!transfer(memento)) {
        if (blocking) {
            // delegate to the event router (which may discard, enqueue and block, or log in current thread)
            final EventRoute route = asyncQueueFullPolicy.getRoute(thread.getId(), memento.getLevel());
            route.logMessage(this, memento);
        } else {
            error("Appender " + getName() + " is unable to write primary appenders. queue is full");
            logToErrorAppenderIfNecessary(false, memento);
        }
    }
}

异步Appender追加日志

  1. 异步Appender追加日志AsyncAppender.append
  2. 如果不是异步格式化日志
  3. 根据日志事件LogEvent创建Log4jLogEvent
  4. 将Log4jLogEvent尝试提交至队列,如果是TransferQueue类型则尝试转换,否则offer提交至默认的blockingQueue阻塞队列
  5. 如果提交队列失败(队列满了或者其他种种原因)
  6. 如果是阻塞类型的Appender则提交给EventRout路由处理日志事件
  7. 否则通知异常handle句柄并打印error日志如果存在errorAppender

创建log4j日志事件

  1. Log4jLogEvent根据日志事件Log4jEvent copy并创建一个final类型的日志对象
  2. Log4jLogEvent序列化日志事件Log4jEvent返回一个日志事件代理LogEventProxy
  3. 如果日志事件是Log4jLogEvent类型
  4. 调用事件getThrownProxy方法确认ThrownProxy已经完成初始化,如果thrownProxy为空则根据Thrown创建thrown代理
  5. 创建代理并返回
  6. Log4jLogEvent根据序列化对象将其反序列化为Log4jLogEvent对象

创建ThrownProxy代理

private ThrowableProxy(final Throwable throwable, final Set<Throwable> visited) {
    this.throwable = throwable;
    this.name = throwable.getClass().getName();
    this.message = throwable.getMessage();
    this.localizedMessage = throwable.getLocalizedMessage();
    final Map<String, CacheEntry> map = new HashMap<>();
    final Stack<Class<?>> stack = ReflectionUtil.getCurrentStackTrace();
    this.extendedStackTrace = this.toExtendedStackTrace(stack, map, null, throwable.getStackTrace());
    final Throwable throwableCause = throwable.getCause();
    final Set<Throwable> causeVisited = new HashSet<>(1);
    this.causeProxy = throwableCause == null ? null : new ThrowableProxy(throwable, stack, map, throwableCause,
        visited, causeVisited);
    this.suppressedProxies = this.toSuppressedProxies(throwable, visited);
}
  1. 根据阻塞的堆栈我们可以看到日志阻塞点,我们直奔主题,查看获取扩展堆栈信息的代码toExtendedStackTrace
  2. 判断throwable堆栈是否与当前堆栈类名相同,是则使用当前堆栈中class类的CL(classloader)作为lastLoader,使用当前堆栈创建扩展堆栈信息并缓存至extendedStackTrace
  3. 如果类名与当前堆栈类不同则根据类名从map临时缓存中获取缓存CacheEntry,根据缓存创建扩展堆栈信息及更相信lastLoader
  4. 否则使用lastLoader按照类名称加载class类,再根据class类获取类位置以及版本信息,如果获取不到则使用符号:‘?’代替,例如:
at sun.reflect.GeneratedMethodAccessor321.invoke(Unknown Source) ~[?:?]
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) ~[?:1.8.0_77]
at java.lang.reflect.Method.invoke(Method.java:498) ~[?:1.8.0_77]
at org.springframework.util.ReflectionUtils.invokeMethod(ReflectionUtils.java:216) ~[spring-core-4.3.15.RELEASE.jar!/:4.3.15.RELEASE]
at org.springframework.cloud.context.scope.GenericScope$LockedScopedProxyFactoryBean.invoke(GenericScope.java:472) ~[spring-cloud-context-1.3.3.RELEASE.jar!/:1.3.3.RELEASE]
at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:179) ~[spring-aop-4.3.15.RELEASE.jar!/:4.3.15.RELEASE]
at org.springframework.aop.framework.CglibAopProxy$DynamicAdvisedInterceptor.intercept(CglibAopProxy.java:673) ~[spring-aop-4.3.15.RELEASE.jar!/:4.3.15.RELEASE]
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) [?:1.8.0_77]
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) [?:1.8.0_77]
at java.lang.Thread.run(Thread.java:745) [?:1.8.0_77]
  1. 而产生大量锁阻塞的地方就是loadClass部分,根据进程堆栈中的锁可以看到正是ClassLoader的锁位置
protected Class loadClass(String name, boolean resolve)
    throws ClassNotFoundException
{
    synchronized (getClassLoadingLock(name)) {
            ...
    }
}
  1. 产生锁竞争的原因是因为class名称相同,那么相同的类名称为什么会加载多次呢?

为什么同一个类会加载多次?

原因大家应该很容易猜到,在不同的classloader中加载同一个类多次是没毛病的。那么我们进一步分析是解析哪个class时出现了lastLoader找不到的情况。断点日志查看是这家伙GeneratedMethodAccessor321

GeneratedMethodAccessor类

  1. 通过搜索果然根本找不到这个类,于是查询了一下资料,是JVM对反射调用的优化策略产生的类
  2. 如果设置的不膨胀并且不是VM匿名类,则直接怼反射进行生成字节码的方式调用
  3. 否则创建代理访问反射方法进行调用。在调用次数超过阈值(默认15)时(即发生膨胀)。对反射方法生成字节码并以后采用该方式进行调用
public MethodAccessor newMethodAccessor(Method var1) {
    checkInitted();
  //不膨胀,直接生成字节码方式调用(并且不是VM匿名类)
    if (noInflation && !ReflectUtil.isVMAnonymousClass(var1.getDeclaringClass())) {
        return (new MethodAccessorGenerator()).generateMethod(var1.getDeclaringClass(), var1.getName(), var1.getParameterTypes(), var1.getReturnType(), var1.getExceptionTypes(), var1.getModifiers());
    } else {
        NativeMethodAccessorImpl var2 = new NativeMethodAccessorImpl(var1);
        DelegatingMethodAccessorImpl var3 = new DelegatingMethodAccessorImpl(var2);
        var2.setParent(var3);
        return var3;
    }
}
//NativeMethodAccessorImpl
public Object invoke(Object var1, Object[] var2) throws IllegalArgumentException, InvocationTargetException {
    //如果调用次数发生膨胀超过阈值,并且不是VM匿名类,生成字节码方式调用
    if (++this.numInvocations > ReflectionFactory.inflationThreshold() && !ReflectUtil.isVMAnonymousClass(this.method.getDeclaringClass())) {
        MethodAccessorImpl var3 = (MethodAccessorImpl)(new MethodAccessorGenerator()).generateMethod(this.method.getDeclaringClass(), this.method.getName(), this.method.getParameterTypes(), this.method.getReturnType(), this.method.getExceptionTypes(), this.method.getModifiers());
        this.parent.setDelegate(var3);
    }
    //否则反射调用
    return invoke0(this.method, var1, var2);
}
  1. 继续查看生成的字节码是如果加载的MethodAccessorGenerator.generateMethod
  2. 可以看到一堆ASM字节码生成器的代码拼装。最后可以看到使用的var1参数的classloader进行的加载,也就是方法的声明类
//入参var1是反射调用的方法method的声明类
(MethodAccessorImpl)(new MethodAccessorGenerator()).generateMethod(this.method.getDeclaringClass(), this.method.getName(), this.method.getParameterTypes(), this.method.getReturnType(), this.method.getExceptionTypes(), this.method.getModifiers());
private MagicAccessorImpl generate(final Class<?> var1, String var2, Class<?>[] var3, Class<?> var4, Class<?>[] var5, int var6, boolean var7, boolean var8, Class<?> var9) {
    ByteVector var10 = ByteVectorFactory.create();
    this.asm = new ClassFileAssembler(var10);
    ...
        return (MagicAccessorImpl)AccessController.doPrivileged(new PrivilegedAction<MagicAccessorImpl>() {
            public MagicAccessorImpl run() {
                try {
                  //使用ClassDefiner声明类,最后一个参数是使用的var1的classloader,也就是反射方法声明类的classloader
                    return (MagicAccessorImpl)ClassDefiner.defineClass(var13, var17, 0, var17.length, var1.getClassLoader()).newInstance();
                } catch (IllegalAccessException | InstantiationException var2) {
                    throw new InternalError(var2);
                }
            }
        });
    }
}
class ClassDefiner {
    static final Unsafe unsafe = Unsafe.getUnsafe();
    static Class<?> defineClass(String var0, byte[] var1, int var2, int var3, final ClassLoader var4) {
      //DelegatingClassLoader代理classloader直接委派原classloader加载
      //即:使用声明方法类的classloader加载
        ClassLoader var5 = (ClassLoader)AccessController.doPrivileged(new PrivilegedAction<ClassLoader>() {
            public ClassLoader run() {
                return new DelegatingClassLoader(var4);
            }
        });
        return unsafe.defineClass(var0, var1, var2, var3, var5, (ProtectionDomain)null);
    }
}
  1. 那么如果lastLoader也就是堆栈的上一层的classloader与使用反射调用的方法声明类的classloader不一致就会产生每次出现该异常就会重新加载该类,如果大量的该种情况处的异常出现,则会造成极大的性能损耗。

问题总结

问题1

该问题可以选择适宜的策略来进行规避,比如使用Discard模式丢弃队列满或者消费繁忙时的日志,并且重写日志队列,取消队列阻塞方式的offer添加

问题2

这类问题官方的讨论中也有开发者给出了感叹:除了允许禁用扩展堆栈跟踪信息,或者牺牲多个类加载器存在时的正确性之外,我不确定我们还能做什么。哈哈Log4j2阻塞业务线程引发的思考_第1张图片

你可能感兴趣的:(java)