用图形化的方式加深加锁和解锁过程的解释性。
java源码 - ReentrantLock
java源码 - ReentrantLock之FairSync
java源码 - ReentrantLock之NonfairSync
java源码 - ReentrantLock图解加锁过程
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
这个方法的执行逻辑如下:
1. 获取当前将要去获取锁的线程,在此时的情况下,也就是我们的thread2线程。
2. 获取当前AQS的state的值。如果此时state的值是0,那么我们就通过CAS操作获取锁,然后设置AQS的exclusiveOwnerThread为thread2。很明显,在当前的这个执行情况下,state的值是1不是0,因为我们的thread1还没有释放锁。
3. 如果当前将要去获取锁的线程等于此时AQS的exclusiveOwnerThread的线程,则此时将state的值加1,很明显这是重入锁的实现方式。在此时的运行状态下,将要去获取锁的线程不是thread1,也就是说这一步不成立。
4. 以上操作都不成立的话,我们直接返回false。
既然返回了false,那么之后就会调用addWaiter方法,这个方法负责把当前无法获取锁的线程包装为一个Node添加到队尾。通过下面的代码片段我们就知道调用逻辑:
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
我们进入到addWaiter方法内部去看:
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
很明显在addWaiter内部:
第一步:将当前将要去获取锁的线程也就是thread2和独占模式封装为一个node对象。并且我们也知道在当前的执行环境下,线程阻塞队列是空的,因为thread1获取了锁,thread2也是刚刚来请求锁,所以线程阻塞队列里面是空的。很明显,这个时候队列的尾部tail节点也是null,那么将直接进入到enq方法。
第二步:我们首先看下enq方法的内部实现。首先内部是一个自悬循环。
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
第一次循环:
t为null,随后我们new出了一个空的node节点,并且通过CAS操作设置了线程的阻塞队列的head节点就是我们刚才new出来的那个空的node节点,其实这是一个“假节点”,那么什么是“假节点”呢?那就是节点中不包含线程。设置完head节点后,同时又将head节点赋值给尾部tail节点,到此第一次循环结束。此时的节点就是如下:
第二次循环:
现在判断尾部tail已经不是null了,那么就走第二个分支了。将尾部tail节点赋值给我们传递进来的节点Node的前驱节点,此时的结构如下:
然后再通过CAS的操作,将我们传递进来的节点node设置成尾部tail节点,并且将我们的node节点赋值给原来的老的那个尾部节点的后继节点,此时的结构如下:
这个时候代码中使用了return关键字,也就是证明我们经过了2次循环跳出了这个自悬循环体系。
按照代码的执行流程,接下来将会调用acquireQueued方法,主要是判断当前节点的前驱节点是不是head节点,如果是的话,就再去尝试获取锁,如果不是,就挂起当前线程。这里可能有人疑问了,为什么判断当前节点的前驱节点是head节点的话就去尝试获取锁呢?因为我们知道head节点是一个假节点,如果当前的节点的前驱节点是头节点即是假节点的话,那么这个假节点的后继节点就有可能有获取锁的机会,所以我们需要去尝试。
现在我们看下acquireQueued方法内部,我们也可以清楚的看到,这个方法的内部也是一个自悬循环。
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
第一次循环:获取我们传入node的前驱节点,判断是否是head节点,现在我们的状态是:
很明显满足当前node节点的前驱节点是head节点,那么现在我们就要去调用tryAcquire方法,也就是NonfairSync类的tryAcquire方法,而这个方法又调用了ReentrantLock.Sync.nonfairTryAcquire方法。
很明显此时thread2获取锁是失败的,直接返回false。按照调用流程,现在进入了当前节点的前驱节点的shouldParkAfterFailedAcquire方法,检查当前节点的前驱节点的waitstatus。shouldParkAfterFailedAcquire方法内部如下:
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
return true;
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
很明显,我们在这里的情况是第3种情况,并且这个方法运行后返回false。此时的结构如下,主要是head节点的waitStatus由0变成了-1。
第二次循环:获取我们传入node的前驱节点,判断是否是head节点,现在我们的状态是:
很明显满足当前node节点的前驱节点是head节点,那么现在我们就要去调用tryAcquire方法,也就是NonfairSync类的tryAcquire方法,而这个方法又调用了ReentrantLock.Sync.nonfairTryAcquire方法。
很明显此时thread2获取锁是失败的,直接返回false。按照调用流程,现在进入了当前节点的前驱节点的shouldParkAfterFailedAcquire方法,检查当前节点的前驱节点的waitstatus。此时waitstatus为-1,这个方法返回true。
shouldParkAfterFailedAcquire返回true后,就会调用parkAndCheckInterrupt方法,直接将当前线程thread2阻塞。
仔细看这个方法acquireQueued方法,是无限循环,感觉如果p == head && tryAcquire(arg)条件不满足循环将永远无法结束,在这里,当然不会出现死循环。因为parkAndCheckInterrupt会把当前线程阻塞。分析到这里,我们的thread2线程已经被阻塞了,这个线程不会再继续执行下去了。
thread3首先调用lock方法获取锁,首先去抢占锁,因为我们知道thread1还没有释放锁,这个时候thread3肯定抢占失败,于是又调用了acquire方法,接着又失败。接着会去调用addWaiter方法,将当前线程thread3封装成node加入到线程阻塞队列的尾部。现在的结构如下:
addWaiter如下:
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
第一步:将当前将要去获取锁的线程也就是thread3和独占模式封装为一个node对象。并且我们也知道在当前的执行环境下,线程阻塞队列不是空的,因为thread2获取了锁,thread2已经加入了队列。
很明显,这个时候队列的尾部tail节点也不是null,那么将直接进入到if分支。将尾部tail节点赋值给我们传入的node节点的前驱节点。如下:
第二步:通过CAS将我们传递进来的node节点设置成tail节点,并且将新tail节点设置成老tail节点的后继节点。
到此,addWaiter方法执行完毕,接着执行acquireQueued方法。这是一个自循环方法。
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
第一次循环:获取我们传入node的前驱节点,判断是否是head节点,现在我们的状态是:
我们传入node的前驱节点不是head节点,那么直接走第二个if分支,调用shouldParkAfterFailedAcquire方法。
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
return true;
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
很明显,我们在这里的情况是第3种情况,并且这个方法运行后返回false。
此时的结构如下,主要是t节点的waitStatus由0变成了-1。
第二次循环:获取我们传入node的前驱节点,判断是否是head节点,现在我们的状态是:
很明显我们传入node的前驱节点不是head节点,那么直接进入shouldParkAfterFailedAcquire方法。
1. 如果前驱节点的waitStatus为-1,也就是SIGNAL,就返回true。
2. 如果当前节点的前驱节点的waitstatus大于0,也就是说被CANCEL掉了,这个时候我们会除掉这个节点。
3. 如果都不是以上的情况,就通过CAS操作将这个前驱节点设置成SIGHNAL。
很明显,我们在这里的情况是第1种情况,并且这个方法运行后返回true。
然后就会调用parkAndCheckInterrupt方法,直接将当前线程thread3阻塞。现在thread2和thread3都已经被阻塞。
现在thread1要开始释放锁了。调用unlock方法,unlock方法又调用了内部的release方法:
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
如果上述操作成功了,也就是tryRelase方法返回了true,那么就会判断当前队列中的head节点,当前结构如下:
如果head节点不为null,并且head节点的waitStatus不为0, 我们就调用unparkSuccessor方法去唤醒head节点的后继节点。
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
第一步:获取head节点的waitStatus,如果小于0,就通过CAS操作将head节点的waitStatus修改为0,现在是:
第二步:寻找head节点的下一个节点,如果这个节点的waitStatus小于0,就唤醒这个节点,否则遍历下去,找到第一个waitStatus<=0的节点,并唤醒。现在thread2线程被唤醒了,我们知道刚才thread2在acquireQueued被中断,现在继续执行,又进入了for循环,当前节点的前驱节点是head并且调用tryAquire方法获得锁并且成功。那么设置当前Node为head节点,将里面的thead和prev设置为null。
调用完毕后,acquireQueued返回false。并且现在thread2自由了。到此,已经全部分析完毕。