第三讲 2.1 Time-Domain Representations for LTI System

2.1 Time-Domain Representations for LTI System

# 该课程为陈后金教授的信号与系统课程,该课程可在国家精品课程网上下载  #
#This was a note noted by WONG Zinhoo,  Reproduced please specify the Source and the original link. 该笔记由  WONG Zinhoo 记录,转载请注明 #

Traditional Methods

1. 存在经典连续时间系统的系统激励与响应的时域分析方法,其本质是对线性微分方程的求解过程。
2. 对于经典的分时域分析方法不做展开,其具有一定的局限性,这是由微分方程特解的求解难度和其物理特征不明显所决定的。
     
     1st For homogeneous equation  , the homogeneous solution is .
         Characteristics equation is: 
         Solving the CE get the Characteristic Solution: 
         So, the homogeneous solution is
     2nd For Non-homogeneous equation  , the particular solution is .
         Suppose the particular solution is     
         Inverse obtained the c=1/3.
     3rd Complete Solution:
             Complete Solution = homogeneous solution + particular solution
               
Inverse obtained the
 
Solution:

Response of LTI

1. Zero-input Response:
     The Zero-input Response of  is
     Characteristic Function: 
     Characteristic Solution: 
     So: 
     and,
 
         So: 
结论:一旦系统的微分方程确定了,那么该系统的零输入响应的形式就确定了,且该系统的零输入响应由方程的特征根决定。
2. Zero-state Response:
原理:将任意系统信号分解为冲激信号然后以卷积求解零状态响应。

3. Impulse response 冲激响应:
给予系统一个单位脉冲激励所得到的响应:
冲激平衡法求解 h(t):
Exp 1.
System,
           Find the solution of pulse response.
           
                              (t)
           h(t) 回代系统:              A=1
                   解得:           h(t)=e^-3t
Exp 2.
本质上是解二阶非齐次微分方程。    
4.  Step response 阶跃响应


本质上是变上限积分函数关系。
5. Question
System have a step response as pic<1> when the input is step signal u(t). What’s the function f(t) of input signal when the output like pic<2>?
           
Pic<1>    G(t) 单位阶跃响应                   Pic<2>  h(t)  冲激响应

解:  f(t)= g(t)-2g(t-1)-g(t-2)
-------------------------------------------------------------------------------------------------------------------------------------------------

Linkedin : http://www.linkedin.com/profile/view?id=307187546
Email :  [email protected] 
Weibo:  http://weibo.com/mrzihaowang/
Facebook: http://www.facebook.com/zinhoowong
twitter:   https://twitter.com/WongZinhoo

你可能感兴趣的:(Signal,and,System/信号与系统)