fashion_mnist 数据集加载 附网盘链接

Tensorflow学习

链接:https://pan.baidu.com/s/1c4IZITtl3dUbR8p4qMg7lQ
提取码:8tn0

或(嗯…通常network error,我科学上网了也还是加载不出来)

fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels),(test_images, test_labels) = fashion_mnist.load_data()

So,加载本地fashion_mnist方法:

import numpy as np
import os
import gzip

def load_data(data_folder):

  files = [
      'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
      't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
  ]

  paths = []
  for fname in files:
    paths.append(os.path.join(data_folder,fname))

  with gzip.open(paths[0], 'rb') as lbpath:
    y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)

  with gzip.open(paths[1], 'rb') as imgpath:
    x_train = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)

  with gzip.open(paths[2], 'rb') as lbpath:
    y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)

  with gzip.open(paths[3], 'rb') as imgpath:
    x_test = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)

  return (x_train, y_train), (x_test, y_test)

(train_images, train_labels), (test_images, test_labels) = load_data('fashion')

最后一行load_data(’ 这里为刚刚下载好的fashion数据集位置’)

我的数据集和我的ipynb文件在同一目录下,所以直接加载就ok

你可能感兴趣的:(Andrew,Ng,Tensorflow2.0,笔记)