Laplace定理及几个计算行列式的偷懒公式

Laplace定理

n n n阶行列式 ∣ A ∣ |A| A

  • 选择第 i 1 , i 2 , . . . . . . , i k i_1,i_2,......,i_k i1,i2,......,ik行,且 i 1 < i 2 < . . . < i k i_1<i_2<...<i_k i1<i2<...<ik
    ⇓ \Downarrow
  • ∣ A ∣ = |A|= A= k k k行元素形成的所有 k k k阶子式与它们的代数余子式的乘积的和
  • ∣ A ∣ = ∑ 1 ≤ j 1 < j 2 < . . . < j k ≤ n A ( i 1 . . . i k j 1 . . . j k ) ( − 1 ) ( i 1 + . . . + i k ) + ( j 1 + . . . + j k ) A ( i 1 ′ . . . i n − k ′ j 1 ′ . . . j n − k ′ ) |A|=\sum\limits_{1\le j_1<j_2<...<j_k\le n}A\begin{pmatrix} i_1& ...&i_k \\ j_1&...&j_k \end{pmatrix}(-1)^{(i_1+...+i_k)+(j_1+...+j_k)}A\begin{pmatrix} i_1' & ...&i_{n-k}' \\ j_1'&...&j_{n-k}' \end{pmatrix} A=1j1<j2<...<jknA(i1j1......ikjk)(1)(i1+...+ik)+(j1+...+jk)A(i1j1......inkjnk)

偷懒公式

  • ∣ A B O C ∣ = ∣ A O B C ∣ = ∣ A ∣ ∗ ∣ C ∣ \begin{vmatrix}A&B \\O&C \end{vmatrix}=\begin{vmatrix}A&O \\B&C \end{vmatrix}=|A|*|C| AOBC=ABOC=AC
  • ∣ O A k × k B r × r C ∣ = ∣ C A k × k B r × r O ∣ = ( − 1 ) k ∗ r ∣ A ∣ ∗ ∣ B ∣ \begin{vmatrix}O&A_{k×k} \\B_{r×r}&C \end{vmatrix}=\begin{vmatrix}C&A_{k×k} \\B_{r×r}&O \end{vmatrix}=(-1)^{k*r}|A|*|B| OBr×rAk×kC=CBr×rAk×kO=(1)krAB

你可能感兴趣的:(高等袋鼠)