- 曲线的平滑平滑处理
zq4132
c++qtc数据算法
最近在写一些数据处理的程序。经常需要对数据进行平滑处理。直接用FIR滤波器或IIR滤波器都有一个启动问题,滤波完成后总要对数据掐头去尾。因此去找了些简单的数据平滑处理的方法。在一本老版本的《数学手册》中找到了几个基于最小二乘法的数据平滑算法。将其写成了C代码,测试了一下,效果还可以。这里简单的记录一下,算是给自己做个笔记。算法的原理很简单,以五点三次平滑为例。取相邻的5个数据点,可以拟合出一条3次
- OpenCV高阶操作
富士达幸运星
opencv人工智能计算机视觉
在图像处理与计算机视觉领域,OpenCV(OpenSourceComputerVisionLibrary)无疑是最为强大且广泛使用的工具之一。从基础的图像读取、1.图片的上下,采样下采样(Downsampling)下采样通常用于减小图像的尺寸,从而减少图像中的像素数。这个过程可以通过多种方法实现,但最常见的是通过图像金字塔中的pyrDown函数(在OpenCV中)或其他类似的滤波器(如平均池化、最
- 9. 卷积神经网络工程实践
路小漫
小姐姐归来,带着蜜汁微笑,啦啦啦~这次讲的应该是一些成功的神经网络架构,毕竟我们不能总重复造轮子,借鉴很重要AlexNet结构AlexNet的架构如图,有5个卷积层问题1输入是:227×227×3的图像第一层(卷积层1):96个大小为11×11的滤波器,步长为4问题:卷积层的输出是?*答案:55×55×96问题2问题:这一层的超参数的个数是多少?答案:(11×11×3)×96=35k问题3输入:2
- [草稿]关于冲击响应,低通滤波器和高通滤波器,响应曲线和功能的直观理解
Deno_V
信号处理自动化
失眠时突然回忆起原来的学的东西,产生了几个疑问:为什么可以用冲击函数的组合去表示信号?这个信号又是怎么变成冲击函数信号的组合的?我们都知道H(s)=1/(s+1)是低通滤波器,我们也知道他冲击响应的时域信号的形状,那么这个随时间衰减的形状为什么就会是低通的呢?我们都知道H(s)=s/(s+1)是高通滤波器,为什么和低通比起来他仅仅只是分子多了个s,这个s的在物理世界的含义是什么?躺在床上想着想着睡
- 【电子电力】带LCL滤波器的滞后电流控制单相并网光伏逆变器系统
梦想科研社
matlab
摘要带LCL滤波器的滞后电流控制单相并网光伏逆变器系统是一种用于将太阳能光伏发电并入电网的高效电力转换系统。滞后电流控制方式通过快速响应和高精度的电流跟踪,确保了电力的高质量输出,而LCL滤波器则有效减少了逆变器产生的谐波干扰,提高了并网电流的质量。本研究探讨了该系统的工作原理、实验结果及其在实际应用中的表现。理论单相并网光伏逆变器系统的主要功能是将光伏组件产生的直流电转换为交流电,并以高质量的电
- 大厂嵌入式数字信号处理器(DSP)面试题及参考答案
大模型大数据攻城狮
单片机嵌入式面试模数装换器离散信号信号处理滤波器嵌入式芯片
什么是模拟信号处理和数字信号处理(DSP)在嵌入式系统中的应用?模拟信号处理是对连续变化的模拟信号进行操作和处理。在嵌入式系统中,模拟信号处理的应用包括传感器信号的调理,例如温度传感器、压力传感器等输出的模拟信号通常比较微弱且可能受到噪声干扰,需要通过放大器进行放大,通过滤波器去除噪声等操作,使其能够被后续的模数转换电路准确地转换为数字信号。数字信号处理(DSP)则是对离散的数字信号进行各种算法处
- fpga图像处理实战-边缘检测 (Roberts算子)
梦梦梦梦子~
OV5640+图像处理图像处理计算机视觉人工智能
Roberts算子Roberts算子是一种用于边缘检测的算子,主要用于图像处理中检测图像的边缘。它是最早的边缘检测算法之一,以其计算简单、速度快而著称。Roberts算子通过计算图像像素在对角方向的梯度来检测边缘,从而突出图像中灰度变化最剧烈的部分。原理Roberts算子通过对图像应用两个2x2的卷积核(也称为掩模或滤波器)来计算图像在水平和垂直方向上的梯度。假设原始图像的像素值为I(x,y),则
- Python(TensorFlow)和Java及C++受激发射损耗导图
亚图跨际
Python交叉知识算法去噪预测算法聚焦荧光团伪影消除算法囊泡动力学自动化多尺度统计物距
要点神经网络监督去噪预测算法聚焦荧光团和检测模拟平台伪影消除算法性能优化方法自动化多尺度囊泡动力学成像生物研究多维分析统计物距粒子概率算法Python和MATLAB图像降噪算法消除噪声的一种方法是将原始图像与表示低通滤波器或平滑操作的掩模进行卷积。例如,高斯掩模包含由高斯函数确定的元素。这种卷积使每个像素的值与其相邻像素的值更加协调。一般来说,平滑滤波器将每个像素设置为其自身及其附近相邻像素的平均
- 图像去噪技术:自适应均值滤波器(ACmF)
潦草通信狗
均值算法算法人工智能图像处理信息与通信matlab
在图像处理领域,噪声是影响图像质量和视觉感知的主要因素之一。椒盐噪声是一种常见的噪声类型,它随机地将像素值改变为最小值或最大值,严重影响图像的视觉效果。为了解决这一问题,我们开发了一种自适应均值滤波器(ACmF),它能够有效地去除椒盐噪声,同时保留图像的重要细节。一、ACmF算法简介ACmF算法是一种基于局部像素值的自适应去噪方法。它通过分析图像的局部区域,对噪声像素进行智能处理,以恢复图像的原始
- 基于自适应中值滤波器的图像去噪处理
潦草通信狗
计算机视觉图像处理opencv信息与通信matlab
在图像处理中,噪声是一种常见的干扰因素,其中椒盐噪声(SaltandPepperNoise)是一种典型的噪声类型,表现为图像中的随机黑白点。为了消除这种噪声,我们通常使用滤波器进行去噪处理。而自适应中值滤波器(AdaptiveMedianFilter)是一种非常有效的去噪工具。本文将通过MATLAB代码示例来展示如何使用自适应中值滤波器对图像进行去噪处理。1.导入图像并添加椒盐噪声首先,我们读取一
- MATLAB图像去噪和边缘检测
柯咪侠
笔记matlab图像处理
本文涉及分别使用均值滤波器和中值滤波器来除去高斯噪声、椒盐噪声以及sobel边缘检测。程序://a=imread('C:\图片\dog.jpg');I=rgb2gray(a);%将彩色图变成灰色图subplot(3,3,1);imshow(I);xlabel('原始图像');b=imnoise(I,'salt&pepper',0.01);%添加椒盐噪声subplot(3,3,2<
- 2-83 基于matlab的自适应正则化核的模糊均值聚类框架(ARKFCM)
'Matlab学习与应用
matlab工程应用算法matlab均值算法自适应正则化核模糊均值聚类框架脑磁共振图像的分割
基于matlab的自适应正则化核的模糊均值聚类框架(ARKFCM),用于脑磁共振图像的分割。该框架采用三种算法,分别平均滤波器、中值滤波器和设计的加权图像的灰度来代替局部平均灰度。利用邻域中灰度的异质性获取局部信息,并用高斯径向基核函数替换标准欧几里德距离。程序已调通,可直接运行。2-83脑磁共振图像的分割-小红书(xiaohongshu.com)
- Halcon提取彩色多通道图像的亚像素边缘edges_color_sub_pix算子
看海听风心情棒
计算机视觉图像处理人工智能
Halcon提取彩色多通道图像的亚像素边缘edges_color_sub_pix算子如要要提取彩色多通道图像的亚像素边缘,可以使用edges_colorsubpix算子。该算子与edges_sub_pix算子的参数十分相似,但又有所区别。首先从名称上看,edgescolorsubpix算子多了一个color,表示它接受彩色多通道图像的输入,它使用Canny等滤波器提取亚像素精度的彩色边缘。另一个区
- fpga图像处理实战-均值滤波
梦梦梦梦子~
OV5640+图像处理图像处理fpga开发均值算法
均值滤波均值滤波是一种简单的图像处理技术,主要用于平滑图像,去除噪声。它通过用当前像素邻域的平均值代替该像素值,从而实现图像的平滑处理。这种滤波器在图像处理中被广泛用于减少图像中的随机噪声。算法原理均值滤波的基本思想是使用一个固定大小的滑动窗口(通常为方形,如3x3或5x5窗口),逐个遍历图像中的每个像素点。对于每个像素点,计算其邻域像素值的平均值,并用这个平均值替代该像素点的原始值。MATLAB
- 【EMC专题】以太网电路为什么在变压器次级侧加浪涌保护二极管?
阳光宅男@李光熠
EMC专题学习嵌入式硬件
以太网广泛应用于工业领域,会受到诸多恶劣条件的影响。一种特别恶劣的条件是IEC61000-4-5中强调的瞬态浪涌。浪涌瞬变对这些系统特别危险,因为这代表有较大功率耦合到以太网物理层的发送和接收电路,可能会损坏以太网控制器或PHY。以太网物理层包括以太网PHY(或控制器)、变压器和RJ-45连接器。此外在朝向连接器侧的变压器的中心抽头上放置了一个RC滤波器。在原理图中放置浪涌保护二极管时,设计可能会
- Halcon轮廓的生成
看海听风心情棒
人工智能图像处理
Halcon轮廓的生成Halcon轮廓的生成最常用的是edges_sub_pix算子,在该算子中可以选择不同的滤波器类型,最常见的滤波器有canny和lanser2。如果输入图像是多通道的彩色图像,可以选择edges_color_sub_pix算子,其与edges_sub_piy算子类似,也推荐选择sobelfast滤波器,用于快速地提取边缘。最常用的线条提取方法是linesgauss,它具有很强
- Halcon滤波器sobel_amp算子
看海听风心情棒
计算机视觉图像处理
Halcon滤波器sobel_amp算子Halcon提供了大量的边缘滤波器,最常用的是Sobel滤波器。它是一种经典的边缘检测算子,速度和效率都非常令人满意。其在Halcon中对应的算子为sobelamp算子和sobel_dir算子,二者都是使用Sobel算子进行边缘检测。前者用于计算边缘的梯度,后者除了能表示梯度外,还能表示边缘的方向,本文主要介绍sobel_amp算子。下面以一个简单的例子说明
- 用OPENCV C++ 代码实现 检测图片是否有马赛克
南风寺山
opencvc++计算机视觉人工智能图像处理
检测图片是否有马赛克可以使用OpenCV的滤波器和图像处理功能。一种方法是使用OpenCV的均值滤波器,它可以将图像中的像素点平均分配到周围的区域,如果图像中存在马赛克,则均值滤波器可能会把马赛克周围的像素点变得更模糊。下面是使用OpenCV对图像进行均值滤波的示例代码:#include#includeusingnamespacecv;usingnamespacestd;intmain(intar
- Canny详解
kxg916361108
计算机视觉图像处理人工智能
Canny边缘检测是一种经典的图像处理技术,被广泛应用于计算机视觉和图像处理领域。它由JohnF.Canny在1986年提出,是一种多阶段的边缘检测算法,具有高精度和低错误率的特点。Canny边缘检测的步骤:高斯滤波(GaussianBlur):Canny边缘检测首先对图像进行高斯平滑处理,以减少图像中的噪声。高斯滤波器将图像中的每个像素与周围像素进行加权平均,从而模糊图像并减少噪声。计算图像梯度
- PyTorch 实现图像卷积和反卷积操作及代码
算法channel
pytorch人工智能python深度学习机器学习
你好,我是郭震在深度学习中,尤其是在处理图像相关任务时,卷积和反卷积(转置卷积)都是非常核心的概念。它们在神经网络中扮演着重要的角色,但用途和工作原理有所不同。以下是对传统卷积和反卷积的介绍,以及它们在PyTorch中的应用示例。传统卷积(nn.Conv2d)用途传统卷积通常用于特征提取。在处理图像时,通过应用卷积核(也称为滤波器)来扫描输入图像或特征映射,可以有效地识别图像中的局部特征(如边缘、
- 基于二阶卡尔曼滤波的陀螺仪及加速度计信号融合的姿态角度测量
星e雨
嵌入式
★基于陀螺仪及加速度计信号融合的姿态角度测量1、系统组成本文所采用的姿态角度测控系统主要由加速度计、陀螺仪、微控制器、滤波电路、电机调速器、无刷电机等部分组成.姿态检测系统的硬件平台如图1,由微处理器对陀螺仪、滤波电路和加速度计构成的传感器组进行高速A/D采样后,通过卡尔曼滤波器对传感器数据进行补偿和信息融合,得到准确的姿态角度信号,此角度信号再通过PID控制器运算,输出给电子调速器转换成PWM信
- 探索卷积神经网络的奇妙世界-JSP
hkmaike
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNNs)是一种深度学习模型,被广泛用于图像识别、语音识别、自然语言处理等领域。它的特殊结构使得它在处理具有空间结构的数据时表现出色。本文将深入介绍卷积神经网络的原理、应用和未来发展方向。卷积神经网络的基本结构卷积神经网络的核心是卷积层(ConvolutionalLayer)。卷积层通过滤波器(Filter)在输入数据上进行滑动
- circuitJS的使用收获
honey ball
人工智能算法
发现一个电路设计过程中对典型电路不同R,L,C的值所带来的波形效果的仿真网站:电子森林在线工具circuitJS,下面分享一下我的使用体验和收获:电子森林网站链接:eetree.cn/circuitjs/circuitjs.html?lang=zh无源RC高通滤波器教程-知乎(zhihu.com)高低通滤波器的截止频率的计算:高通滤波器是一种电子滤波器,它允许高于某一截止频率的信号通过,而低于该截
- 图像预处理技术与算法
木子n1
算法嵌入式开发算法数码相机计算机视觉
图像预处理是计算机视觉和图像处理中非常关键的第一步,其目的是为了提高后续算法对原始图像的识别、分析和理解能力。以下是一些主要的图像预处理技术:1.图像增强:对比度调整:通过直方图均衡化(HistogramEqualization)等方法改善图像整体或局部的对比度。伽玛校正:改变图像的亮度特性,用于补偿显示器或其他硬件设备的非线性响应。锐化处理:如使用高通滤波器(如拉普拉斯算子、Sobel边缘检测算
- 中科星图——影像卷积核函数Kernel之gaussian高斯核函数核算子、Laplacian4核算子和square核算子等的分析
此星光明
中科星图计算机视觉人工智能深度学习核函数高斯卷积云计算
简介高斯核函数是图像处理中常用的一种卷积核函数。它是一种线性滤波器,可以实现图像的平滑处理。在图像处理中,高斯核函数的卷积操作可以用于去噪、平滑和模糊等任务。高斯核函数的定义可以表示为一个二维高斯分布函数,表达式如下:G(x,y)=(1/(2*pi*sigma^2))*exp(-(x^2+y^2)/(2*sigma^2))其中,x和y表示图像中的像素位置,sigma表示高斯分布的标准差。高斯核函数
- MOSSE算法论文笔记以及代码解释
five days
计算机视觉深度学习机器学习
论文《VisualObjectTrackingusingAdaptiveCorrelationFilters》代码github1.论文idea提出以滤波器求相关的形式,找到最大响应处的位置,也就是我们所跟踪的目标的中心,进而不断的更新跟踪目标框和滤波器。2.跟踪策略如图,根据初始帧圈出的目标框训练滤波器,最大响应处为目标框的中心点,当移动到下一帧时,根据滤波器求相关的算法获得最大响应值,进而得出下
- WebRTC 中带宽估计与拥塞控制算法
逆风了我
WebRTCwebrtc
WebRTC中的带宽估计与拥塞控制算法有很多,以下是其中几种:-GCC(GoogleCongestionControl):基于丢包的带宽估计,其基本思想是根据丢包的多少来判断网络的拥塞程度。丢包越多则认为网络越拥塞,发送速率就需要降低;如果没有丢包,则说明网络状况较好,可以提高发送码率以探测是否有更多的带宽可用。-Goog-REMB:基于接收端的延迟算法,利用延迟值,通过卡尔曼滤波器估计出下一时刻
- FL Studio教程之Wasp XT合成器功能介绍
Bella_d18c
本文将采用图文结合的方式给大家讲解电音编曲软件FLStudio中的WaspXT合成器的相关功能,感兴趣的朋友可以一起来交流哦。从喷涌的岩浆到神秘的宇宙航行,Wasp都能提供相应的背景声,WaspXT是一个3振荡器合成器,它包含一个FILTER(滤波器)栏,3个OSC(振荡器)栏,两个LFO(低频振荡器)栏,一个AMPENV(放大器包络)栏,一个FILTERENV(滤波器包络)栏,一个MODENV(
- 沁恒CH32V30X学习笔记11---使用外部时钟模式2采集脉冲计数
Car12
沁恒CH32V30Xetrch32v30x外部时钟2计数
使用外部时钟模式2采集脉冲计数使用外部触发模式2能在外部时钟引脚输入的每一个上升沿或下降沿计数。将ECE位置位时,将使用外部时钟源模式2。使用外部时钟源模式2时,ETRF被选定为CK_PSC。ETR引脚经过可选的反相器(ETP),分频器(ETPS)后成为ETRP,再经过滤波器(ETF)后即成为ETRF。在ECE位置位且将SMS设为111b时,那么,相当于TS选择ETRF为输入bsp驱动代码bsp_
- vivado FIR Filters
cckkppll
fpga开发
Vivado合成直接从RTL中推导出乘加级联来组成FIR滤波器。这种滤波器有几种可能的实现方式;一个例子是收缩滤波器在7系列DSP48E1Slice用户指南(UG479)中进行了描述,并在8抽头偶数中显示对称收缩FIR(Verilog)。从编码示例下载编码示例文件。8-TapEvenSymmetricSystolicFIR(Verilog)Filename:sfir_even_symetric_s
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&