学习(三)决策树/集成学习

一、决策树

1、决策树就是一个类似流程图的树型结构,其中树的每个内部结点代表对一个属性(取值)的测试,其分支就代表测试的每个结果;而树的每个叶结点就代表一个类别。树的最高层结点就是根结点。

2、方法缺点:1)对连续性的字段比较难预测。2)对有时间顺序的数据,需要很多预处理的工作。3)当类别太多时,错误可能就会增加的比较快。4)一般的算法分类的时候,只是根据一个字段来分类。

3、

学习(三)决策树/集成学习_第1张图片

4、基尼值越小,纯度越大。基尼指数越小,纯度越大。

CART用此作为特征选择

极小化决策树整体的损失函数(ID3,C4.5,CART)

信息增益:ID3,增益率:C4.5,基尼指数:CRAT。

5、剪枝是决策树停止分支的方法之一,剪枝有分预先剪枝和后剪枝两种。预先剪枝是在树的生长过程中设定一个指标,当达到该指标时就停止生长,这样做容易产生“视界局限”,就是一旦停止分支,使得节点N成为叶节点,就断绝了其后继节点进行“好”的分支操作的任何可能性。不严格的说这些已停止的分支会误导学习算法,导致产生的树不纯度降差最大的地方过分靠近根节点。后剪枝中树首先要充分生长,直到叶节点都有最小的不纯度值为止,因而可以克服“视界局限”。然后对所有相邻的成对叶节点考虑是否消去它们,如果消去能引起令人满意的不纯度增长,那么执行消去,并令它们的公共父节点成为新的叶节点。这种“合并”叶节点的做法和节点分支的过程恰好相反,经过剪枝后叶节点常常会分布在很宽的层次上,树也变得非平衡。后剪枝技术的优点是克服了“视界局限”效应,而且无需保留部分样本用于交叉验证,所以可以充分利用全部训练集的信息。但后剪枝的计算量代价比预剪枝方法大得多,特别是在大样本集中,不过对于小样本的情况,后剪枝方法还是优于预剪枝方法的。

二、集成学习

1、Boosting:串型训练。经典算法:Adoboost,    GBDG

2、Bagging:数据随机重抽样/并型训练。经典算法:Random Forest


你可能感兴趣的:(机器学习)