为什么80%的码农都做不了架构师?>>>
/*
* port_handler_linux.cpp
* Copyright (c) 2017, Niryo
* All rights reserved.
*
* This library is an adaptation of dynamixel_sdk library for Raspberry Pi 3 with wiringPi
* See license below
*/
/*******************************************************************************
* Copyright (c) 2016, ROBOTIS CO., LTD.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of ROBOTIS nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************/
/* Author: zerom, Ryu Woon Jung (Leon) */
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "dynamixel_sdk/port_handler_linux.h"
#define LATENCY_TIMER 8 // msec (USB latency timer) [was changed from 4 due to the Ubuntu update 16.04.2]
using namespace dynamixel;
PortHandlerLinux::PortHandlerLinux(const char *port_name)
: socket_fd_(-1),
baudrate_(DEFAULT_BAUDRATE_),
packet_start_time_(0.0),
packet_timeout_(0.0),
tx_time_per_byte(0.0)
{
is_using_ = false;
setPortName(port_name);
}
#include
#ifdef __arm__
#include
#endif
#include
#define GPIO_HALF_DUPLEX_DIRECTION 17
bool PortHandlerLinux::setupGpio()
{
#ifdef __arm__
int result = wiringPiSetupGpio();
if (!result) {
//printf("Gpio started\n");
}
else {
//printf("Gpio startup fail\n");
return false;
}
pinMode(GPIO_HALF_DUPLEX_DIRECTION, OUTPUT);
nanosleep((const struct timespec[]){{0, 500000L}}, NULL);
gpioLow();
#endif
return true;
}
void PortHandlerLinux::gpioHigh()
{
#ifdef __arm__
digitalWrite(GPIO_HALF_DUPLEX_DIRECTION, HIGH);
#endif
}
void PortHandlerLinux::gpioLow()
{
#ifdef __arm__
digitalWrite(GPIO_HALF_DUPLEX_DIRECTION, LOW);
#endif
}
bool PortHandlerLinux::openPort()
{
return setBaudRate(baudrate_);
}
void PortHandlerLinux::closePort()
{
if(socket_fd_ != -1)
close(socket_fd_);
socket_fd_ = -1;
}
void PortHandlerLinux::clearPort()
{
tcflush(socket_fd_, TCIOFLUSH);
}
void PortHandlerLinux::setPortName(const char *port_name)
{
strcpy(port_name_, port_name);
}
char *PortHandlerLinux::getPortName()
{
return port_name_;
}
bool PortHandlerLinux::setBaudRate(const int baudrate)
{
int baud = getCFlagBaud(baudrate);
closePort();
if(baud <= 0) // custom baudrate
{
setupPort(B38400);
baudrate_ = baudrate;
return setCustomBaudrate(baudrate);
}
else
{
baudrate_ = baudrate;
return setupPort(baud);
}
}
int PortHandlerLinux::getBaudRate()
{
return baudrate_;
}
int PortHandlerLinux::getBytesAvailable()
{
int bytes_available;
ioctl(socket_fd_, FIONREAD, &bytes_available);
return bytes_available;
}
int PortHandlerLinux::readPort(uint8_t *packet, int length)
{
return read(socket_fd_, packet, length);
}
int PortHandlerLinux::writePort(uint8_t *packet, int length)
{
gpioHigh();
int write_result = write(socket_fd_, packet, length);
double time_to_wait_secs = (double)length / ((double)baudrate_ / 10.0);
struct timespec tim;
tim.tv_sec = 0;
tim.tv_nsec = (long) (time_to_wait_secs * 1000000000.0);
nanosleep(&tim, NULL);
gpioLow();
return write_result;
}
void PortHandlerLinux::setPacketTimeout(uint16_t packet_length)
{
packet_start_time_ = getCurrentTime();
packet_timeout_ = (tx_time_per_byte * (double)packet_length) + (LATENCY_TIMER * 2.0) + 2.0;
}
void PortHandlerLinux::setPacketTimeout(double msec)
{
packet_start_time_ = getCurrentTime();
packet_timeout_ = msec;
}
bool PortHandlerLinux::isPacketTimeout()
{
if(getTimeSinceStart() > packet_timeout_)
{
packet_timeout_ = 0;
return true;
}
return false;
}
double PortHandlerLinux::getCurrentTime()
{
struct timespec tv;
clock_gettime( CLOCK_REALTIME, &tv);
return ((double)tv.tv_sec*1000.0 + (double)tv.tv_nsec*0.001*0.001);
}
double PortHandlerLinux::getTimeSinceStart()
{
double time;
time = getCurrentTime() - packet_start_time_;
if(time < 0.0)
packet_start_time_ = getCurrentTime();
return time;
}
bool PortHandlerLinux::setupPort(int cflag_baud)
{
struct termios newtio;
socket_fd_ = open(port_name_, O_RDWR|O_NOCTTY|O_NONBLOCK);
if(socket_fd_ < 0)
{
printf("[PortHandlerLinux::SetupPort] Error opening serial port!\n");
return false;
}
bzero(&newtio, sizeof(newtio)); // clear struct for new port settings
newtio.c_cflag = cflag_baud | CS8 | CLOCAL | CREAD;
newtio.c_iflag = IGNPAR;
newtio.c_oflag = 0;
newtio.c_lflag = 0;
newtio.c_cc[VTIME] = 0;
newtio.c_cc[VMIN] = 0;
// clean the buffer and activate the settings for the port
tcflush(socket_fd_, TCIFLUSH);
tcsetattr(socket_fd_, TCSANOW, &newtio);
tx_time_per_byte = (1000.0 / (double)baudrate_) * 10.0;
return true;
}
bool PortHandlerLinux::setCustomBaudrate(int speed)
{
// try to set a custom divisor
struct serial_struct ss;
if(ioctl(socket_fd_, TIOCGSERIAL, &ss) != 0)
{
printf("[PortHandlerLinux::SetCustomBaudrate] TIOCGSERIAL failed!\n");
return false;
}
ss.flags = (ss.flags & ~ASYNC_SPD_MASK) | ASYNC_SPD_CUST;
ss.custom_divisor = (ss.baud_base + (speed / 2)) / speed;
int closest_speed = ss.baud_base / ss.custom_divisor;
if(closest_speed < speed * 98 / 100 || closest_speed > speed * 102 / 100)
{
printf("[PortHandlerLinux::SetCustomBaudrate] Cannot set speed to %d, closest is %d \n", speed, closest_speed);
return false;
}
if(ioctl(socket_fd_, TIOCSSERIAL, &ss) < 0)
{
printf("[PortHandlerLinux::SetCustomBaudrate] TIOCSSERIAL failed!\n");
return false;
}
tx_time_per_byte = (1000.0 / (double)speed) * 10.0;
return true;
}
int PortHandlerLinux::getCFlagBaud(int baudrate)
{
switch(baudrate)
{
case 9600:
return B9600;
case 19200:
return B19200;
case 38400:
return B38400;
case 57600:
return B57600;
case 115200:
return B115200;
case 230400:
return B230400;
case 460800:
return B460800;
case 500000:
return B500000;
case 576000:
return B576000;
case 921600:
return B921600;
case 1000000:
return B1000000;
case 1152000:
return B1152000;
case 1500000:
return B1500000;
case 2000000:
return B2000000;
case 2500000:
return B2500000;
case 3000000:
return B3000000;
case 3500000:
return B3500000;
case 4000000:
return B4000000;
default:
return -1;
}
}
/*******************************************************************************
* Copyright (c) 2016, ROBOTIS CO., LTD.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of ROBOTIS nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************/
/* Author: zerom, Ryu Woon Jung (Leon) */
#if defined(_WIN32) || defined(_WIN64)
#define WINDLLEXPORT
#endif
#include
#include
#include
#include "dynamixel_sdk/protocol2_packet_handler.h"
#define TXPACKET_MAX_LEN (4*1024)
#define RXPACKET_MAX_LEN (4*1024)
/ for Protocol 2.0 Packet /
#define PKT_HEADER0 0
#define PKT_HEADER1 1
#define PKT_HEADER2 2
#define PKT_RESERVED 3
#define PKT_ID 4
#define PKT_LENGTH_L 5
#define PKT_LENGTH_H 6
#define PKT_INSTRUCTION 7
#define PKT_ERROR 8
#define PKT_PARAMETER0 8
/ Protocol 2.0 Error bit /
#define ERRNUM_RESULT_FAIL 1 // Failed to process the instruction packet.
#define ERRNUM_INSTRUCTION 2 // Instruction error
#define ERRNUM_CRC 3 // CRC check error
#define ERRNUM_DATA_RANGE 4 // Data range error
#define ERRNUM_DATA_LENGTH 5 // Data length error
#define ERRNUM_DATA_LIMIT 6 // Data limit error
#define ERRNUM_ACCESS 7 // Access error
#define ERRBIT_ALERT 128 //When the device has a problem, this bit is set to 1. Check "Device Status Check" value.
using namespace dynamixel;
Protocol2PacketHandler *Protocol2PacketHandler::unique_instance_ = new Protocol2PacketHandler();
Protocol2PacketHandler::Protocol2PacketHandler() { }
//#include
//#include
//#include
//
//void Protocol2PacketHandler::setupGpio()
//{
// int result = wiringPiSetupGpio();
// if (!result) {
// printf("Gpio started\n");
// }
// else {
// printf("Gpio startup fail\n");
// }
//
// pinMode(17, OUTPUT);
//
// nanosleep((const struct timespec[]){{0, 500000L}}, NULL);
//
// gpioLow();
//}
//
//void Protocol2PacketHandler::gpioHigh()
//{
// digitalWrite(17, HIGH);
//}
//
//void Protocol2PacketHandler::gpioLow()
//{
// digitalWrite(17, LOW);
//}
void Protocol2PacketHandler::printTxRxResult(int result)
{
switch(result)
{
case COMM_SUCCESS:
printf("[TxRxResult] Communication success.\n");
break;
case COMM_PORT_BUSY:
printf("[TxRxResult] Port is in use!\n");
break;
case COMM_TX_FAIL:
printf("[TxRxResult] Failed transmit instruction packet!\n");
break;
case COMM_RX_FAIL:
printf("[TxRxResult] Failed get status packet from device!\n");
break;
case COMM_TX_ERROR:
printf("[TxRxResult] Incorrect instruction packet!\n");
break;
case COMM_RX_WAITING:
printf("[TxRxResult] Now recieving status packet!\n");
break;
case COMM_RX_TIMEOUT:
printf("[TxRxResult] There is no status packet!\n");
break;
case COMM_RX_CORRUPT:
printf("[TxRxResult] Incorrect status packet!\n");
break;
case COMM_NOT_AVAILABLE:
printf("[TxRxResult] Protocol does not support This function!\n");
break;
default:
break;
}
}
void Protocol2PacketHandler::printRxPacketError(uint8_t error)
{
if (error & ERRBIT_ALERT)
printf("[RxPacketError] Hardware error occurred. Check the error at Control Table (Hardware Error Status)!\n");
int not_alert_error = error & ~ERRBIT_ALERT;
switch(not_alert_error)
{
case 0:
break;
case ERRNUM_RESULT_FAIL:
printf("[RxPacketError] Failed to process the instruction packet!\n");
break;
case ERRNUM_INSTRUCTION:
printf("[RxPacketError] Undefined instruction or incorrect instruction!\n");
break;
case ERRNUM_CRC:
printf("[RxPacketError] CRC doesn't match!\n");
break;
case ERRNUM_DATA_RANGE:
printf("[RxPacketError] The data value is out of range!\n");
break;
case ERRNUM_DATA_LENGTH:
printf("[RxPacketError] The data length does not match as expected!\n");
break;
case ERRNUM_DATA_LIMIT:
printf("[RxPacketError] The data value exceeds the limit value!\n");
break;
case ERRNUM_ACCESS:
printf("[RxPacketError] Writing or Reading is not available to target address!\n");
break;
default:
printf("[RxPacketError] Unknown error code!\n");
break;
}
}
unsigned short Protocol2PacketHandler::updateCRC(uint16_t crc_accum, uint8_t *data_blk_ptr, uint16_t data_blk_size)
{
uint16_t i;
uint16_t crc_table[256] = {0x0000,
0x8005, 0x800F, 0x000A, 0x801B, 0x001E, 0x0014, 0x8011,
0x8033, 0x0036, 0x003C, 0x8039, 0x0028, 0x802D, 0x8027,
0x0022, 0x8063, 0x0066, 0x006C, 0x8069, 0x0078, 0x807D,
0x8077, 0x0072, 0x0050, 0x8055, 0x805F, 0x005A, 0x804B,
0x004E, 0x0044, 0x8041, 0x80C3, 0x00C6, 0x00CC, 0x80C9,
0x00D8, 0x80DD, 0x80D7, 0x00D2, 0x00F0, 0x80F5, 0x80FF,
0x00FA, 0x80EB, 0x00EE, 0x00E4, 0x80E1, 0x00A0, 0x80A5,
0x80AF, 0x00AA, 0x80BB, 0x00BE, 0x00B4, 0x80B1, 0x8093,
0x0096, 0x009C, 0x8099, 0x0088, 0x808D, 0x8087, 0x0082,
0x8183, 0x0186, 0x018C, 0x8189, 0x0198, 0x819D, 0x8197,
0x0192, 0x01B0, 0x81B5, 0x81BF, 0x01BA, 0x81AB, 0x01AE,
0x01A4, 0x81A1, 0x01E0, 0x81E5, 0x81EF, 0x01EA, 0x81FB,
0x01FE, 0x01F4, 0x81F1, 0x81D3, 0x01D6, 0x01DC, 0x81D9,
0x01C8, 0x81CD, 0x81C7, 0x01C2, 0x0140, 0x8145, 0x814F,
0x014A, 0x815B, 0x015E, 0x0154, 0x8151, 0x8173, 0x0176,
0x017C, 0x8179, 0x0168, 0x816D, 0x8167, 0x0162, 0x8123,
0x0126, 0x012C, 0x8129, 0x0138, 0x813D, 0x8137, 0x0132,
0x0110, 0x8115, 0x811F, 0x011A, 0x810B, 0x010E, 0x0104,
0x8101, 0x8303, 0x0306, 0x030C, 0x8309, 0x0318, 0x831D,
0x8317, 0x0312, 0x0330, 0x8335, 0x833F, 0x033A, 0x832B,
0x032E, 0x0324, 0x8321, 0x0360, 0x8365, 0x836F, 0x036A,
0x837B, 0x037E, 0x0374, 0x8371, 0x8353, 0x0356, 0x035C,
0x8359, 0x0348, 0x834D, 0x8347, 0x0342, 0x03C0, 0x83C5,
0x83CF, 0x03CA, 0x83DB, 0x03DE, 0x03D4, 0x83D1, 0x83F3,
0x03F6, 0x03FC, 0x83F9, 0x03E8, 0x83ED, 0x83E7, 0x03E2,
0x83A3, 0x03A6, 0x03AC, 0x83A9, 0x03B8, 0x83BD, 0x83B7,
0x03B2, 0x0390, 0x8395, 0x839F, 0x039A, 0x838B, 0x038E,
0x0384, 0x8381, 0x0280, 0x8285, 0x828F, 0x028A, 0x829B,
0x029E, 0x0294, 0x8291, 0x82B3, 0x02B6, 0x02BC, 0x82B9,
0x02A8, 0x82AD, 0x82A7, 0x02A2, 0x82E3, 0x02E6, 0x02EC,
0x82E9, 0x02F8, 0x82FD, 0x82F7, 0x02F2, 0x02D0, 0x82D5,
0x82DF, 0x02DA, 0x82CB, 0x02CE, 0x02C4, 0x82C1, 0x8243,
0x0246, 0x024C, 0x8249, 0x0258, 0x825D, 0x8257, 0x0252,
0x0270, 0x8275, 0x827F, 0x027A, 0x826B, 0x026E, 0x0264,
0x8261, 0x0220, 0x8225, 0x822F, 0x022A, 0x823B, 0x023E,
0x0234, 0x8231, 0x8213, 0x0216, 0x021C, 0x8219, 0x0208,
0x820D, 0x8207, 0x0202 };
for (uint16_t j = 0; j < data_blk_size; j++)
{
i = ((uint16_t)(crc_accum >> 8) ^ *data_blk_ptr++) & 0xFF;
crc_accum = (crc_accum << 8) ^ crc_table[i];
}
return crc_accum;
}
void Protocol2PacketHandler::addStuffing(uint8_t *packet)
{
int i = 0, index = 0;
int packet_length_in = DXL_MAKEWORD(packet[PKT_LENGTH_L], packet[PKT_LENGTH_H]);
int packet_length_out = packet_length_in;
uint8_t temp[TXPACKET_MAX_LEN] = {0};
for (uint8_t s = PKT_HEADER0; s <= PKT_LENGTH_H; s++)
temp[s] = packet[s]; // FF FF FD XX ID LEN_L LEN_H
//memcpy(temp, packet, PKT_LENGTH_H+1);
index = PKT_INSTRUCTION;
for (i = 0; i < packet_length_in - 2; i++) // except CRC
{
temp[index++] = packet[i+PKT_INSTRUCTION];
if (packet[i+PKT_INSTRUCTION] == 0xFD && packet[i+PKT_INSTRUCTION-1] == 0xFF && packet[i+PKT_INSTRUCTION-2] == 0xFF)
{ // FF FF FD
temp[index++] = 0xFD;
packet_length_out++;
}
}
temp[index++] = packet[PKT_INSTRUCTION+packet_length_in-2];
temp[index++] = packet[PKT_INSTRUCTION+packet_length_in-1];
//
if (packet_length_in != packet_length_out)
packet = (uint8_t *)realloc(packet, index * sizeof(uint8_t));
///
for (uint8_t s = 0; s < index; s++)
packet[s] = temp[s];
//memcpy(packet, temp, index);
packet[PKT_LENGTH_L] = DXL_LOBYTE(packet_length_out);
packet[PKT_LENGTH_H] = DXL_HIBYTE(packet_length_out);
}
void Protocol2PacketHandler::removeStuffing(uint8_t *packet)
{
int i = 0, index = 0;
int packet_length_in = DXL_MAKEWORD(packet[PKT_LENGTH_L], packet[PKT_LENGTH_H]);
int packet_length_out = packet_length_in;
index = PKT_INSTRUCTION;
for (i = 0; i < packet_length_in - 2; i++) // except CRC
{
if (packet[i+PKT_INSTRUCTION] == 0xFD && packet[i+PKT_INSTRUCTION+1] == 0xFD && packet[i+PKT_INSTRUCTION-1] == 0xFF && packet[i+PKT_INSTRUCTION-2] == 0xFF)
{ // FF FF FD FD
packet_length_out--;
i++;
}
packet[index++] = packet[i+PKT_INSTRUCTION];
}
packet[index++] = packet[PKT_INSTRUCTION+packet_length_in-2];
packet[index++] = packet[PKT_INSTRUCTION+packet_length_in-1];
packet[PKT_LENGTH_L] = DXL_LOBYTE(packet_length_out);
packet[PKT_LENGTH_H] = DXL_HIBYTE(packet_length_out);
}
int Protocol2PacketHandler::txPacket(PortHandler *port, uint8_t *txpacket)
{
uint16_t total_packet_length = 0;
uint16_t written_packet_length = 0;
if (port->is_using_)
return COMM_PORT_BUSY;
port->is_using_ = true;
// byte stuffing for header
addStuffing(txpacket);
// check max packet length
total_packet_length = DXL_MAKEWORD(txpacket[PKT_LENGTH_L], txpacket[PKT_LENGTH_H]) + 7;
// 7: HEADER0 HEADER1 HEADER2 RESERVED ID LENGTH_L LENGTH_H
if (total_packet_length > TXPACKET_MAX_LEN)
{
port->is_using_ = false;
return COMM_TX_ERROR;
}
// make packet header
txpacket[PKT_HEADER0] = 0xFF;
txpacket[PKT_HEADER1] = 0xFF;
txpacket[PKT_HEADER2] = 0xFD;
txpacket[PKT_RESERVED] = 0x00;
// add CRC16
uint16_t crc = updateCRC(0, txpacket, total_packet_length - 2); // 2: CRC16
txpacket[total_packet_length - 2] = DXL_LOBYTE(crc);
txpacket[total_packet_length - 1] = DXL_HIBYTE(crc);
// tx packet
port->clearPort();
written_packet_length = port->writePort(txpacket, total_packet_length);
if (total_packet_length != written_packet_length)
{
port->is_using_ = false;
return COMM_TX_FAIL;
}
return COMM_SUCCESS;
}
int Protocol2PacketHandler::rxPacket(PortHandler *port, uint8_t *rxpacket)
{
int result = COMM_TX_FAIL;
uint16_t rx_length = 0;
uint16_t wait_length = 11; // minimum length (HEADER0 HEADER1 HEADER2 RESERVED ID LENGTH_L LENGTH_H INST ERROR CRC16_L CRC16_H)
while(true)
{
rx_length += port->readPort(&rxpacket[rx_length], wait_length - rx_length);
if (rx_length >= wait_length)
{
uint16_t idx = 0;
// find packet header
for (idx = 0; idx < (rx_length - 3); idx++)
{
if ((rxpacket[idx] == 0xFF) && (rxpacket[idx+1] == 0xFF) && (rxpacket[idx+2] == 0xFD) && (rxpacket[idx+3] != 0xFD))
break;
}
if (idx == 0) // found at the beginning of the packet
{
if (rxpacket[PKT_RESERVED] != 0x00 ||
rxpacket[PKT_ID] > 0xFC ||
DXL_MAKEWORD(rxpacket[PKT_LENGTH_L], rxpacket[PKT_LENGTH_H]) > RXPACKET_MAX_LEN ||
rxpacket[PKT_INSTRUCTION] != 0x55)
{
// remove the first byte in the packet
for (uint8_t s = 0; s < rx_length - 1; s++)
rxpacket[s] = rxpacket[1 + s];
//memcpy(&rxpacket[0], &rxpacket[idx], rx_length - idx);
rx_length -= 1;
continue;
}
// re-calculate the exact length of the rx packet
if (wait_length != DXL_MAKEWORD(rxpacket[PKT_LENGTH_L], rxpacket[PKT_LENGTH_H]) + PKT_LENGTH_H + 1)
{
wait_length = DXL_MAKEWORD(rxpacket[PKT_LENGTH_L], rxpacket[PKT_LENGTH_H]) + PKT_LENGTH_H + 1;
continue;
}
if (rx_length < wait_length)
{
// check timeout
if (port->isPacketTimeout() == true)
{
if (rx_length == 0)
{
result = COMM_RX_TIMEOUT;
}
else
{
result = COMM_RX_CORRUPT;
}
break;
}
else
{
continue;
}
}
// verify CRC16
uint16_t crc = DXL_MAKEWORD(rxpacket[wait_length-2], rxpacket[wait_length-1]);
if (updateCRC(0, rxpacket, wait_length - 2) == crc)
{
result = COMM_SUCCESS;
}
else
{
result = COMM_RX_CORRUPT;
}
break;
}
else
{
// remove unnecessary packets
for (uint8_t s = 0; s < rx_length - idx; s++)
rxpacket[s] = rxpacket[idx + s];
//memcpy(&rxpacket[0], &rxpacket[idx], rx_length - idx);
rx_length -= idx;
}
}
else
{
// check timeout
if (port->isPacketTimeout() == true)
{
if (rx_length == 0)
{
result = COMM_RX_TIMEOUT;
}
else
{
result = COMM_RX_CORRUPT;
}
break;
}
}
}
port->is_using_ = false;
if (result == COMM_SUCCESS)
removeStuffing(rxpacket);
return result;
}
// NOT for BulkRead / SyncRead instruction
int Protocol2PacketHandler::txRxPacket(PortHandler *port, uint8_t *txpacket, uint8_t *rxpacket, uint8_t *error)
{
int result = COMM_TX_FAIL;
// tx packet
result = txPacket(port, txpacket);
if (result != COMM_SUCCESS)
return result;
// (Instruction == BulkRead or SyncRead) == this function is not available.
if (txpacket[PKT_INSTRUCTION] == INST_BULK_READ || txpacket[PKT_INSTRUCTION] == INST_SYNC_READ)
result = COMM_NOT_AVAILABLE;
// (ID == Broadcast ID) == no need to wait for status packet or not available.
// (Instruction == action) == no need to wait for status packet
if (txpacket[PKT_ID] == BROADCAST_ID || txpacket[PKT_INSTRUCTION] == INST_ACTION)
{
port->is_using_ = false;
return result;
}
// set packet timeout
if (txpacket[PKT_INSTRUCTION] == INST_READ)
{
port->setPacketTimeout((uint16_t)(DXL_MAKEWORD(txpacket[PKT_PARAMETER0+2], txpacket[PKT_PARAMETER0+3]) + 11));
}
else
{
port->setPacketTimeout((uint16_t)11);
// HEADER0 HEADER1 HEADER2 RESERVED ID LENGTH_L LENGTH_H INST ERROR CRC16_L CRC16_H
}
// rx packet
do {
result = rxPacket(port, rxpacket);
} while (result == COMM_SUCCESS && txpacket[PKT_ID] != rxpacket[PKT_ID]);
if (result == COMM_SUCCESS && txpacket[PKT_ID] == rxpacket[PKT_ID])
{
if (error != 0)
*error = (uint8_t)rxpacket[PKT_ERROR];
}
return result;
}
int Protocol2PacketHandler::ping(PortHandler *port, uint8_t id, uint8_t *error)
{
return ping(port, id, 0, error);
}
int Protocol2PacketHandler::ping(PortHandler *port, uint8_t id, uint16_t *model_number, uint8_t *error)
{
int result = COMM_TX_FAIL;
uint8_t txpacket[10] = {0};
uint8_t rxpacket[14] = {0};
if (id >= BROADCAST_ID)
return COMM_NOT_AVAILABLE;
txpacket[PKT_ID] = id;
txpacket[PKT_LENGTH_L] = 3;
txpacket[PKT_LENGTH_H] = 0;
txpacket[PKT_INSTRUCTION] = INST_PING;
result = txRxPacket(port, txpacket, rxpacket, error);
if (result == COMM_SUCCESS && model_number != 0)
*model_number = DXL_MAKEWORD(rxpacket[PKT_PARAMETER0+1], rxpacket[PKT_PARAMETER0+2]);
return result;
}
int Protocol2PacketHandler::broadcastPing(PortHandler *port, std::vector &id_list)
{
const int STATUS_LENGTH = 14;
int result = COMM_TX_FAIL;
id_list.clear();
uint16_t rx_length = 0;
uint16_t wait_length = STATUS_LENGTH * MAX_ID;
uint8_t txpacket[10] = {0};
uint8_t rxpacket[STATUS_LENGTH * MAX_ID] = {0};
txpacket[PKT_ID] = BROADCAST_ID;
txpacket[PKT_LENGTH_L] = 3;
txpacket[PKT_LENGTH_H] = 0;
txpacket[PKT_INSTRUCTION] = INST_PING;
result = txPacket(port, txpacket);
if (result != COMM_SUCCESS)
{
port->is_using_ = false;
return result;
}
// set rx timeout
port->setPacketTimeout((uint16_t)(wait_length * 30));
while(1)
{
rx_length += port->readPort(&rxpacket[rx_length], wait_length - rx_length);
if (port->isPacketTimeout() == true)// || rx_length >= wait_length)
break;
}
port->is_using_ = false;
if (rx_length == 0)
return COMM_RX_TIMEOUT;
while(1)
{
if (rx_length < STATUS_LENGTH)
return COMM_RX_CORRUPT;
uint16_t idx = 0;
// find packet header
for (idx = 0; idx < (rx_length - 2); idx++)
{
if (rxpacket[idx] == 0xFF && rxpacket[idx+1] == 0xFF && rxpacket[idx+2] == 0xFD)
break;
}
if (idx == 0) // found at the beginning of the packet
{
// verify CRC16
uint16_t crc = DXL_MAKEWORD(rxpacket[STATUS_LENGTH-2], rxpacket[STATUS_LENGTH-1]);
if (updateCRC(0, rxpacket, STATUS_LENGTH - 2) == crc)
{
result = COMM_SUCCESS;
id_list.push_back(rxpacket[PKT_ID]);
for (uint8_t s = 0; s < rx_length - STATUS_LENGTH; s++)
rxpacket[s] = rxpacket[STATUS_LENGTH + s];
rx_length -= STATUS_LENGTH;
if (rx_length == 0)
return result;
}
else
{
result = COMM_RX_CORRUPT;
// remove header (0xFF 0xFF 0xFD)
for (uint8_t s = 0; s < rx_length - 3; s++)
rxpacket[s] = rxpacket[3 + s];
rx_length -= 3;
}
}
else
{
// remove unnecessary packets
for (uint8_t s = 0; s < rx_length - idx; s++)
rxpacket[s] = rxpacket[idx + s];
rx_length -= idx;
}
}
return result;
}
int Protocol2PacketHandler::action(PortHandler *port, uint8_t id)
{
uint8_t txpacket[10] = {0};
txpacket[PKT_ID] = id;
txpacket[PKT_LENGTH_L] = 3;
txpacket[PKT_LENGTH_H] = 0;
txpacket[PKT_INSTRUCTION] = INST_ACTION;
return txRxPacket(port, txpacket, 0);
}
int Protocol2PacketHandler::reboot(PortHandler *port, uint8_t id, uint8_t *error)
{
uint8_t txpacket[10] = {0};
uint8_t rxpacket[11] = {0};
txpacket[PKT_ID] = id;
txpacket[PKT_LENGTH_L] = 3;
txpacket[PKT_LENGTH_H] = 0;
txpacket[PKT_INSTRUCTION] = INST_REBOOT;
return txRxPacket(port, txpacket, rxpacket, error);
}
int Protocol2PacketHandler::factoryReset(PortHandler *port, uint8_t id, uint8_t option, uint8_t *error)
{
uint8_t txpacket[11] = {0};
uint8_t rxpacket[11] = {0};
txpacket[PKT_ID] = id;
txpacket[PKT_LENGTH_L] = 4;
txpacket[PKT_LENGTH_H] = 0;
txpacket[PKT_INSTRUCTION] = INST_FACTORY_RESET;
txpacket[PKT_PARAMETER0] = option;
return txRxPacket(port, txpacket, rxpacket, error);
}
int Protocol2PacketHandler::readTx(PortHandler *port, uint8_t id, uint16_t address, uint16_t length)
{
int result = COMM_TX_FAIL;
uint8_t txpacket[14] = {0};
if (id >= BROADCAST_ID)
return COMM_NOT_AVAILABLE;
txpacket[PKT_ID] = id;
txpacket[PKT_LENGTH_L] = 7;
txpacket[PKT_LENGTH_H] = 0;
txpacket[PKT_INSTRUCTION] = INST_READ;
txpacket[PKT_PARAMETER0+0] = (uint8_t)DXL_LOBYTE(address);
txpacket[PKT_PARAMETER0+1] = (uint8_t)DXL_HIBYTE(address);
txpacket[PKT_PARAMETER0+2] = (uint8_t)DXL_LOBYTE(length);
txpacket[PKT_PARAMETER0+3] = (uint8_t)DXL_HIBYTE(length);
result = txPacket(port, txpacket);
// set packet timeout
if (result == COMM_SUCCESS)
port->setPacketTimeout((uint16_t)(length + 11));
return result;
}
int Protocol2PacketHandler::readRx(PortHandler *port, uint8_t id, uint16_t length, uint8_t *data, uint8_t *error)
{
int result = COMM_TX_FAIL;
uint8_t *rxpacket = (uint8_t *)malloc(RXPACKET_MAX_LEN);
//(length + 11 + (length/3)); // (length/3): consider stuffing
//uint8_t *rxpacket = new uint8_t[length + 11 + (length/3)]; // (length/3): consider stuffing
do {
result = rxPacket(port, rxpacket);
} while (result == COMM_SUCCESS && rxpacket[PKT_ID] != id);
if (result == COMM_SUCCESS && rxpacket[PKT_ID] == id)
{
if (error != 0)
*error = (uint8_t)rxpacket[PKT_ERROR];
for (uint8_t s = 0; s < length; s++)
data[s] = rxpacket[PKT_PARAMETER0 + 1 + s];
//memcpy(data, &rxpacket[PKT_PARAMETER0+1], length);
}
free(rxpacket);
//delete[] rxpacket;
return result;
}
int Protocol2PacketHandler::readTxRx(PortHandler *port, uint8_t id, uint16_t address, uint16_t length, uint8_t *data, uint8_t *error)
{
int result = COMM_TX_FAIL;
uint8_t txpacket[14] = {0};
uint8_t *rxpacket = (uint8_t *)malloc(RXPACKET_MAX_LEN);
//(length + 11 + (length/3)); // (length/3): consider stuffing
if (id >= BROADCAST_ID)
return COMM_NOT_AVAILABLE;
txpacket[PKT_ID] = id;
txpacket[PKT_LENGTH_L] = 7;
txpacket[PKT_LENGTH_H] = 0;
txpacket[PKT_INSTRUCTION] = INST_READ;
txpacket[PKT_PARAMETER0+0] = (uint8_t)DXL_LOBYTE(address);
txpacket[PKT_PARAMETER0+1] = (uint8_t)DXL_HIBYTE(address);
txpacket[PKT_PARAMETER0+2] = (uint8_t)DXL_LOBYTE(length);
txpacket[PKT_PARAMETER0+3] = (uint8_t)DXL_HIBYTE(length);
result = txRxPacket(port, txpacket, rxpacket, error);
if (result == COMM_SUCCESS)
{
if (error != 0)
*error = (uint8_t)rxpacket[PKT_ERROR];
for (uint8_t s = 0; s < length; s++)
data[s] = rxpacket[PKT_PARAMETER0 + 1 + s];
//memcpy(data, &rxpacket[PKT_PARAMETER0+1], length);
}
free(rxpacket);
//delete[] rxpacket;
return result;
}
int Protocol2PacketHandler::read1ByteTx(PortHandler *port, uint8_t id, uint16_t address)
{
return readTx(port, id, address, 1);
}
int Protocol2PacketHandler::read1ByteRx(PortHandler *port, uint8_t id, uint8_t *data, uint8_t *error)
{
uint8_t data_read[1] = {0};
int result = readRx(port, id, 1, data_read, error);
if (result == COMM_SUCCESS)
*data = data_read[0];
return result;
}
int Protocol2PacketHandler::read1ByteTxRx(PortHandler *port, uint8_t id, uint16_t address, uint8_t *data, uint8_t *error)
{
uint8_t data_read[1] = {0};
int result = readTxRx(port, id, address, 1, data_read, error);
if (result == COMM_SUCCESS)
*data = data_read[0];
return result;
}
int Protocol2PacketHandler::read2ByteTx(PortHandler *port, uint8_t id, uint16_t address)
{
return readTx(port, id, address, 2);
}
int Protocol2PacketHandler::read2ByteRx(PortHandler *port, uint8_t id, uint16_t *data, uint8_t *error)
{
uint8_t data_read[2] = {0};
int result = readRx(port, id, 2, data_read, error);
if (result == COMM_SUCCESS)
*data = DXL_MAKEWORD(data_read[0], data_read[1]);
return result;
}
int Protocol2PacketHandler::read2ByteTxRx(PortHandler *port, uint8_t id, uint16_t address, uint16_t *data, uint8_t *error)
{
uint8_t data_read[2] = {0};
int result = readTxRx(port, id, address, 2, data_read, error);
if (result == COMM_SUCCESS)
*data = DXL_MAKEWORD(data_read[0], data_read[1]);
return result;
}
int Protocol2PacketHandler::read4ByteTx(PortHandler *port, uint8_t id, uint16_t address)
{
return readTx(port, id, address, 4);
}
int Protocol2PacketHandler::read4ByteRx(PortHandler *port, uint8_t id, uint32_t *data, uint8_t *error)
{
uint8_t data_read[4] = {0};
int result = readRx(port, id, 4, data_read, error);
if (result == COMM_SUCCESS)
*data = DXL_MAKEDWORD(DXL_MAKEWORD(data_read[0], data_read[1]), DXL_MAKEWORD(data_read[2], data_read[3]));
return result;
}
int Protocol2PacketHandler::read4ByteTxRx(PortHandler *port, uint8_t id, uint16_t address, uint32_t *data, uint8_t *error)
{
uint8_t data_read[4] = {0};
int result = readTxRx(port, id, address, 4, data_read, error);
if (result == COMM_SUCCESS)
*data = DXL_MAKEDWORD(DXL_MAKEWORD(data_read[0], data_read[1]), DXL_MAKEWORD(data_read[2], data_read[3]));
return result;
}
int Protocol2PacketHandler::writeTxOnly(PortHandler *port, uint8_t id, uint16_t address, uint16_t length, uint8_t *data)
{
int result = COMM_TX_FAIL;
uint8_t *txpacket = (uint8_t *)malloc(length+12);
//uint8_t *txpacket = new uint8_t[length+12];
txpacket[PKT_ID] = id;
txpacket[PKT_LENGTH_L] = DXL_LOBYTE(length+5);
txpacket[PKT_LENGTH_H] = DXL_HIBYTE(length+5);
txpacket[PKT_INSTRUCTION] = INST_WRITE;
txpacket[PKT_PARAMETER0+0] = (uint8_t)DXL_LOBYTE(address);
txpacket[PKT_PARAMETER0+1] = (uint8_t)DXL_HIBYTE(address);
for (uint8_t s = 0; s < length; s++)
txpacket[PKT_PARAMETER0+2+s] = data[s];
//memcpy(&txpacket[PKT_PARAMETER0+2], data, length);
result = txPacket(port, txpacket);
port->is_using_ = false;
free(txpacket);
//delete[] txpacket;
return result;
}
int Protocol2PacketHandler::writeTxRx(PortHandler *port, uint8_t id, uint16_t address, uint16_t length, uint8_t *data, uint8_t *error)
{
int result = COMM_TX_FAIL;
uint8_t *txpacket = (uint8_t *)malloc(length + 12);
//uint8_t *txpacket = new uint8_t[length+12];
uint8_t rxpacket[11] = {0};
txpacket[PKT_ID] = id;
txpacket[PKT_LENGTH_L] = DXL_LOBYTE(length+5);
txpacket[PKT_LENGTH_H] = DXL_HIBYTE(length+5);
txpacket[PKT_INSTRUCTION] = INST_WRITE;
txpacket[PKT_PARAMETER0+0] = (uint8_t)DXL_LOBYTE(address);
txpacket[PKT_PARAMETER0+1] = (uint8_t)DXL_HIBYTE(address);
for (uint8_t s = 0; s < length; s++)
txpacket[PKT_PARAMETER0+2+s] = data[s];
//memcpy(&txpacket[PKT_PARAMETER0+2], data, length);
result = txRxPacket(port, txpacket, rxpacket, error);
free(txpacket);
//delete[] txpacket;
return result;
}
int Protocol2PacketHandler::write1ByteTxOnly(PortHandler *port, uint8_t id, uint16_t address, uint8_t data)
{
uint8_t data_write[1] = { data };
return writeTxOnly(port, id, address, 1, data_write);
}
int Protocol2PacketHandler::write1ByteTxRx(PortHandler *port, uint8_t id, uint16_t address, uint8_t data, uint8_t *error)
{
uint8_t data_write[1] = { data };
return writeTxRx(port, id, address, 1, data_write, error);
}
int Protocol2PacketHandler::write2ByteTxOnly(PortHandler *port, uint8_t id, uint16_t address, uint16_t data)
{
uint8_t data_write[2] = { DXL_LOBYTE(data), DXL_HIBYTE(data) };
return writeTxOnly(port, id, address, 2, data_write);
}
int Protocol2PacketHandler::write2ByteTxRx(PortHandler *port, uint8_t id, uint16_t address, uint16_t data, uint8_t *error)
{
uint8_t data_write[2] = { DXL_LOBYTE(data), DXL_HIBYTE(data) };
return writeTxRx(port, id, address, 2, data_write, error);
}
int Protocol2PacketHandler::write4ByteTxOnly(PortHandler *port, uint8_t id, uint16_t address, uint32_t data)
{
uint8_t data_write[4] = { DXL_LOBYTE(DXL_LOWORD(data)), DXL_HIBYTE(DXL_LOWORD(data)), DXL_LOBYTE(DXL_HIWORD(data)), DXL_HIBYTE(DXL_HIWORD(data)) };
return writeTxOnly(port, id, address, 4, data_write);
}
int Protocol2PacketHandler::write4ByteTxRx(PortHandler *port, uint8_t id, uint16_t address, uint32_t data, uint8_t *error)
{
uint8_t data_write[4] = { DXL_LOBYTE(DXL_LOWORD(data)), DXL_HIBYTE(DXL_LOWORD(data)), DXL_LOBYTE(DXL_HIWORD(data)), DXL_HIBYTE(DXL_HIWORD(data)) };
return writeTxRx(port, id, address, 4, data_write, error);
}
int Protocol2PacketHandler::regWriteTxOnly(PortHandler *port, uint8_t id, uint16_t address, uint16_t length, uint8_t *data)
{
int result = COMM_TX_FAIL;
uint8_t *txpacket = (uint8_t *)malloc(length + 12);
//uint8_t *txpacket = new uint8_t[length+12];
txpacket[PKT_ID] = id;
txpacket[PKT_LENGTH_L] = DXL_LOBYTE(length+5);
txpacket[PKT_LENGTH_H] = DXL_HIBYTE(length+5);
txpacket[PKT_INSTRUCTION] = INST_REG_WRITE;
txpacket[PKT_PARAMETER0+0] = (uint8_t)DXL_LOBYTE(address);
txpacket[PKT_PARAMETER0+1] = (uint8_t)DXL_HIBYTE(address);
for (uint8_t s = 0; s < length; s++)
txpacket[PKT_PARAMETER0+2+s] = data[s];
//memcpy(&txpacket[PKT_PARAMETER0+2], data, length);
result = txPacket(port, txpacket);
port->is_using_ = false;
free(txpacket);
//delete[] txpacket;
return result;
}
int Protocol2PacketHandler::regWriteTxRx(PortHandler *port, uint8_t id, uint16_t address, uint16_t length, uint8_t *data, uint8_t *error)
{
int result = COMM_TX_FAIL;
uint8_t *txpacket = (uint8_t *)malloc(length + 12);
//uint8_t *txpacket = new uint8_t[length+12];
uint8_t rxpacket[11] = {0};
txpacket[PKT_ID] = id;
txpacket[PKT_LENGTH_L] = DXL_LOBYTE(length+5);
txpacket[PKT_LENGTH_H] = DXL_HIBYTE(length+5);
txpacket[PKT_INSTRUCTION] = INST_REG_WRITE;
txpacket[PKT_PARAMETER0+0] = (uint8_t)DXL_LOBYTE(address);
txpacket[PKT_PARAMETER0+1] = (uint8_t)DXL_HIBYTE(address);
for (uint8_t s = 0; s < length; s++)
txpacket[PKT_PARAMETER0+2+s] = data[s];
//memcpy(&txpacket[PKT_PARAMETER0+2], data, length);
result = txRxPacket(port, txpacket, rxpacket, error);
free(txpacket);
//delete[] txpacket;
return result;
}
int Protocol2PacketHandler::syncReadTx(PortHandler *port, uint16_t start_address, uint16_t data_length, uint8_t *param, uint16_t param_length)
{
int result = COMM_TX_FAIL;
uint8_t *txpacket = (uint8_t *)malloc(param_length + 14);
// 14: HEADER0 HEADER1 HEADER2 RESERVED ID LEN_L LEN_H INST START_ADDR_L START_ADDR_H DATA_LEN_L DATA_LEN_H CRC16_L CRC16_H
txpacket[PKT_ID] = BROADCAST_ID;
txpacket[PKT_LENGTH_L] = DXL_LOBYTE(param_length + 7); // 7: INST START_ADDR_L START_ADDR_H DATA_LEN_L DATA_LEN_H CRC16_L CRC16_H
txpacket[PKT_LENGTH_H] = DXL_HIBYTE(param_length + 7); // 7: INST START_ADDR_L START_ADDR_H DATA_LEN_L DATA_LEN_H CRC16_L CRC16_H
txpacket[PKT_INSTRUCTION] = INST_SYNC_READ;
txpacket[PKT_PARAMETER0+0] = DXL_LOBYTE(start_address);
txpacket[PKT_PARAMETER0+1] = DXL_HIBYTE(start_address);
txpacket[PKT_PARAMETER0+2] = DXL_LOBYTE(data_length);
txpacket[PKT_PARAMETER0+3] = DXL_HIBYTE(data_length);
for (uint8_t s = 0; s < param_length; s++)
txpacket[PKT_PARAMETER0+4+s] = param[s];
//memcpy(&txpacket[PKT_PARAMETER0+4], param, param_length);
result = txPacket(port, txpacket);
if (result == COMM_SUCCESS)
port->setPacketTimeout((uint16_t)((11 + data_length) * param_length));
free(txpacket);
return result;
}
int Protocol2PacketHandler::syncWriteTxOnly(PortHandler *port, uint16_t start_address, uint16_t data_length, uint8_t *param, uint16_t param_length)
{
int result = COMM_TX_FAIL;
uint8_t *txpacket = (uint8_t *)malloc(param_length + 14);
//uint8_t *txpacket = new uint8_t[param_length + 14];
// 14: HEADER0 HEADER1 HEADER2 RESERVED ID LEN_L LEN_H INST START_ADDR_L START_ADDR_H DATA_LEN_L DATA_LEN_H CRC16_L CRC16_H
txpacket[PKT_ID] = BROADCAST_ID;
txpacket[PKT_LENGTH_L] = DXL_LOBYTE(param_length + 7); // 7: INST START_ADDR_L START_ADDR_H DATA_LEN_L DATA_LEN_H CRC16_L CRC16_H
txpacket[PKT_LENGTH_H] = DXL_HIBYTE(param_length + 7); // 7: INST START_ADDR_L START_ADDR_H DATA_LEN_L DATA_LEN_H CRC16_L CRC16_H
txpacket[PKT_INSTRUCTION] = INST_SYNC_WRITE;
txpacket[PKT_PARAMETER0+0] = DXL_LOBYTE(start_address);
txpacket[PKT_PARAMETER0+1] = DXL_HIBYTE(start_address);
txpacket[PKT_PARAMETER0+2] = DXL_LOBYTE(data_length);
txpacket[PKT_PARAMETER0+3] = DXL_HIBYTE(data_length);
for (uint8_t s = 0; s < param_length; s++)
txpacket[PKT_PARAMETER0+4+s] = param[s];
//memcpy(&txpacket[PKT_PARAMETER0+4], param, param_length);
result = txRxPacket(port, txpacket, 0, 0);
free(txpacket);
//delete[] txpacket;
return result;
}
int Protocol2PacketHandler::bulkReadTx(PortHandler *port, uint8_t *param, uint16_t param_length)
{
int result = COMM_TX_FAIL;
uint8_t *txpacket = (uint8_t *)malloc(param_length + 10);
//uint8_t *txpacket = new uint8_t[param_length + 10];
// 10: HEADER0 HEADER1 HEADER2 RESERVED ID LEN_L LEN_H INST CRC16_L CRC16_H
txpacket[PKT_ID] = BROADCAST_ID;
txpacket[PKT_LENGTH_L] = DXL_LOBYTE(param_length + 3); // 3: INST CRC16_L CRC16_H
txpacket[PKT_LENGTH_H] = DXL_HIBYTE(param_length + 3); // 3: INST CRC16_L CRC16_H
txpacket[PKT_INSTRUCTION] = INST_BULK_READ;
for (uint8_t s = 0; s < param_length; s++)
txpacket[PKT_PARAMETER0+s] = param[s];
//memcpy(&txpacket[PKT_PARAMETER0], param, param_length);
result = txPacket(port, txpacket);
if (result == COMM_SUCCESS)
{
int wait_length = 0;
for (int i = 0; i < param_length; i += 5)
wait_length += DXL_MAKEWORD(param[i+3], param[i+4]) + 10;
port->setPacketTimeout((uint16_t)wait_length);
}
free(txpacket);
//delete[] txpacket;
return result;
}
int Protocol2PacketHandler::bulkWriteTxOnly(PortHandler *port, uint8_t *param, uint16_t param_length)
{
int result = COMM_TX_FAIL;
uint8_t *txpacket = (uint8_t *)malloc(param_length + 10);
//uint8_t *txpacket = new uint8_t[param_length + 10];
// 10: HEADER0 HEADER1 HEADER2 RESERVED ID LEN_L LEN_H INST CRC16_L CRC16_H
txpacket[PKT_ID] = BROADCAST_ID;
txpacket[PKT_LENGTH_L] = DXL_LOBYTE(param_length + 3); // 3: INST CRC16_L CRC16_H
txpacket[PKT_LENGTH_H] = DXL_HIBYTE(param_length + 3); // 3: INST CRC16_L CRC16_H
txpacket[PKT_INSTRUCTION] = INST_BULK_WRITE;
for (uint8_t s = 0; s < param_length; s++)
txpacket[PKT_PARAMETER0+s] = param[s];
//memcpy(&txpacket[PKT_PARAMETER0], param, param_length);
result = txRxPacket(port, txpacket, 0, 0);
free(txpacket);
//delete[] txpacket;
return result;
}
参考:https://github.com/NiryoRobotics/niryo_one_ros