Opencv 特征点检测 整理(Harris,FAST,SIFT , SURF等总结)

一、Harris角点

角点是图像中最基本的一种关键点,它是由图像中一些几何结构的关节点构成,很多都是线条之间产生的交点。Harris角点是一类比较经典的角点类型,它的基本原理是计算图像中每点与周围点变化率的平均值。

二、FAST角点

harris特征在算法复杂性上比较高,在大的复杂的目标识别或匹配应用上效率不能满足要求,OpenCV提供了一个快速检测角点的类FastFeatureDetector,而实际上FAST并不是快的意思,而是Features from Accelerated Segment Test,但这个算法效率确实比较高

OpenCV里为角点检测提供了统一的接口,通过类下面的detect方法来检测对应的角点,而输出格式都是vector

三、尺度不变的SURF特征

surf特征是类似于SIFT特征的一种尺度不变的特征点,它的优点在于比SIFT效率要高,在实际运算中可以达到实时性的要求,关于SURF的原理这里就不过多的介绍,网络上这类的文章很多。

类似于FAST特征点的求法,SURF也可以使用通用接口求得,而SURF特征的类为SurfFeatureDetector,类似的SIFT特征点的检测类为SiftFeatureDetector。

四、SURF特征的描述

在图像配准中,特征点的描述往往不是位置这么简单,而是使用了一个N维向量来描述一个特征点,这些描述子之间可以通过定义距离公式来比较相近程度。

SurfDescriptorExtractor 是一个提取SURF特征点以及其描述的类。

你可能感兴趣的:(openCV,&,ImageProcessing)