用优先队列式分支限界法解决0-1背包问题

用优先队列式分支限界法解决0-1背包问题的算法思想:
1.分支限界法常以广度优先或最小耗费优先(最大效益优先)方式搜索问题的解空间树, 对于0-1背包问题的解空间树是一个颗子集树。
2.在分支限界法中有一个活结点表,活结点表中的每个活结点只有一次机会成为扩展结点,一旦成为  扩展结点就一次性产生所有儿子结点,在这些儿子结点中,导致不可行解或导致非最优解的儿子 结点被舍弃,其余儿子结点被加入到活结点表中。对于0-1背包问题中的每个活结点只有两个儿子 结点,分别表示对物品i的选取和对物品i的舍去;在判断儿子结点是否能加入到活结点表中,有两个 函数需要满足,第一个称为约束函数,判断能否满足背包容量约束,第二个称为限界函数,判断 是否可能有最优解。
3.为了尽快找到0-1背包问题的解,每次选取下一个活结点成为扩展结点的判断依据是当前情况下 最有可能找到最优解的下一个结点。因此,每次选择扩展结点的方法:当前情况下,在活结点表中 选择活结点的上界uprofit(通过限界函数Bound求出)最大的活结点成为当前的扩展结点。 这一过程一直持续到找到所需的解或活结点表为空时为止。这个过程体现出分支限界法以“最大 效益优先”方式进行。
4.为了在活结点表中选择拥有最大的上界uprofit的活结点,在活结点表上实现优先队列。
5.通过上述第3点,可以求出0-1背包问题的最优值。为了求出0-1背包问题的最优解,对于每一个在 活结点表中的活结点创建一个树结点,树节点需要反映该结点的父节点和是否有左孩子(有左孩子 表示物品i选取了,没有左孩子表示物品i舍去了)。因此,可以构造一颗子集树,最优解就是从树根 到叶子结点的路径,子集树的第i层的所有结点就是在不同情况下对物品i的取舍结点。构造最优解的 顺序是从叶子结点到根结点的过程。

从上述算法思想中,得出必须解决的问题:
1.优先队列式的活结点表
2.活结点表对应的子集树

算法涉及的函数功能:
1.建立一个最大堆、初始化最大堆、在最大堆中插入一个元素和在最大堆中取出最大元素
2.求解0-1背包问题的主函数Knapsack
3.向子集树和最大堆中插入结点函数AddLiveNode
4.计算结点价值上界函数Bound,为了方便,需要对物品以单位价值量排序
5.负责求解0-1背包问题的最优值和最优解函数MaxKnapsack

算法涉及的类:
1.树结点类,用于构造子集树,以便计算最优解
2.堆结点类,用于定义堆元素类型,便于MaxKnapsack函数使用
3.最大堆类,用于实现优先队列
4.物品类,用于保存物品编号和物品的单位重量价值
5.解决0-1背包问题的主类

以下是具体的代码:

#include "stdafx.h"
#include 
using namespace std;   

typedef int Typew;
typedef int Typep;

//物品类
class Object{
	friend Typep Knapsack(Typew *, Typep *, Typew, int, int *);
public:
	int operator <= (Object a) const{
		return (d >= a.d);
	}
private:
	int ID; //物品编号
	float d; //单位重量价值
};

//树结点类
class bbnode{
	friend class Knap;
	friend Typep Knapsack(Typew *, Typep *, Typew, int, int *);
private:
	bbnode *parent; //指向父节点的指针
	int LChild; //如果是左儿子结点取1,也即说明该物品已装进背包
};

//堆结点类
class HeapNode{
	friend class Knap;
	friend class MaxHeap;
public:
	operator Typep()const{return uprofit;};
private:
	Typep uprofit, //结点的价值上界
		  profit; //结点所相应的价值
	Typew weight; //结点所相应的重量
	int level; //活结点在子集树中所处的层序号
	bbnode *elemPtr; //指向该活结点在子集树中相应结点的指针
};

//最大堆类
class MaxHeap{
public:
	MaxHeap(int maxElem)
	{
		HeapElem = new HeapNode* [maxElem+1]; //下标为0的保留
		capacity = maxElem;
		size = 0;
	}
	void InsertMax(HeapNode *newNode);
	HeapNode DeleteMax(HeapNode* &N);

private:
	int capacity;     
    int size;     
    HeapNode **HeapElem; 

};

//0-1背包问题的主类
class Knap{
	//Knapsack主函数功能:解决初始化、求解最优值和最优解、回收内存
	friend Typep Knapsack(Typew *, Typep *, Typew, int, int *);
public:
	Typep MaxKnapsack();
private:
	MaxHeap *H;
	//Bound辅助Maxknapsack函数:计算结点价值上界
	Typep Bound(int i);
	//AddLiveNode辅助Maxknapsack函数:将活结点插入子集树和优先队列中
	void AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level);
	bbnode *E; //指向扩展结点的指针
	Typew c; //背包容量
	int n; //物品总数
	Typew *w; //物品重量数组(以单位重量价值降序)
	Typep *p; //物品价值数组(以单位重量价值降序)
	Typew cw; //当前装包重量
	Typep cp; //当前装包价值
	int *bestx; //最优解	
};

void MaxHeap::InsertMax(HeapNode *newNode)
{
	//极端情况下暂未考虑,比如堆容量已满等等
	int i = 1;
		for (i = ++size; i/2 > 0 && HeapElem[i/2]->uprofit < newNode->uprofit; i /= 2)
		{
			HeapElem[i] = HeapElem[i/2];
		}
		HeapElem[i] = newNode;
}

HeapNode MaxHeap::DeleteMax(HeapNode *&N)
{
	//极端情况下暂未考虑
		if(size >0 )
		{
			N = HeapElem[1];
			//从堆顶开始调整
			int i = 1;
			while(i < size)
			{
				if(((i*2 +1) <= size) && HeapElem[i*2]->uprofit > HeapElem[i*2 +1]->uprofit)
				{
					HeapElem[i] = HeapElem[i*2];
					i = i*2;
				}
				else
				{ 
					if(i*2 <= size)
					{
							HeapElem[i] = HeapElem[i*2];
							i = i*2;
					}
					else
						break;
				}				
			}
			if(i < size) 
				HeapElem[i] = HeapElem[size];
		}
		size--;
		return *N;
}

Typep Knap::MaxKnapsack()
{
	H = new MaxHeap(1000);
	bestx = new int [n+1];
	//初始化,为处理子集树中的第一层做准备,物品i处于子集树中的第i层
	int i = 1; //生成子集树中的第一层的结点
	E = 0; //将首个扩展点设置为null,也就是物品1的父节点
	cw = 0;
	cp = 0;
	Typep bestp = 0; //当前最优值 
	Typep up = Bound(1); // 选取物品1之后的价值上界
	//当选择左儿子结点时,上界约束up不用关心,重量约束wt需要考虑。因为上界约束跟父节点相同。
	//当选择右儿子结点时,上界约束up需要考虑,重量约束不需要考虑。因为父节点和该结点重量相同。
	while (i != n+1)
	{
		//检查当前扩展结点的左儿子结点
		Typew wt = cw + w[i]; //当前选择物品i之后的总重量wt
		if(wt <= c) //背包能将物品i装下,也即当前扩展结点的左儿子结点可行
		{
			if(cp + p[i] > bestp)
				bestp = cp + p[i];
			AddLiveNode(up, cp + p[i], cw + w[i], 1, i);
		}
		//检查当前扩展结点的右儿子结点
		up = Bound(i + 1); //未选择物品i之后的价值上界
		if(up >= bestp)
			AddLiveNode(up, cp, cw, 0, i);
		//从优先队列中选择价值上界最大的结点成为扩展结点
		HeapNode* N;
		H->DeleteMax(N);
		E = N->elemPtr;
		cw = N->weight;
		cp = N->profit;
		up = N->uprofit;
		i = N->level + 1; //准备生成N.level+1层的子集树结点
	}
	//从子集树中的某叶子结点开始构造当前最优解
	for (int i = n; i > 0; i--)
	{
		bestx[i] = E->LChild;
		E = E->parent;
	}
	return cp;

}

Typep Knap::Bound(int i)
{
	Typew cleft = c - cw;
	Typep b = cp;
	while (i<=n && w[i] <= cleft)
	{
		cleft -= w[i];
		b += p[i];
		i++;
	}
	if(i<=n) b += p[i]/w[i] * cleft;
	return b;
}

void Knap::AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level)
{
	bbnode *b=new bbnode;     
    b->parent=E;     
    b->LChild=ch;     
	HeapNode *N = new HeapNode;  
    N->uprofit=up;  
    N->profit=cp;  
    N->weight=cw;     
    N->level=level;  
	N->elemPtr=b;     
	H->InsertMax(N);  
}

//Knapsack返回最大价值,最优值保存在bestx
Typep Knapsack(Typew *w, Typep *p, Typew c, int n, int *bestx)
{//数组w、p和bestx中下标为0的元素保留不用
	//初始化
	Typew W = 0;
	Typep P = 0;
	Object *Q = new Object[n];
	for(int i =1; i<=n; i++)
	{
		Q[i-1].ID = i;
		Q[i-1].d = 1.0*p[i]/w[i];
		P += p[i];
		W += w[i];
	}
	//所有物品的总重量小于等于背包容量c
	if (W <= c) 
	{
		for(int i =1; i<=n; i++)
		{
			bestx[i] = p[i];
		}
		return P;
	}
	//所有物品的总重量大于背包容量c,存在最佳装包方案
	//sort(Q,n);对物品以单位重量价值降序排序
	//采用简单冒泡排序
	for(int i = 1; i
运行结果如下图:



你可能感兴趣的:(算法设计与分析,C++,Visual,Studio)