- 4.桥接模式
油盐不进的吗
桥接模式python开发语言
概况桥接模式:将抽象部分与实现部分分离,使它们可以独立变化,通过组合而非继承的方式实现解耦。业务场景场景描述:开发一个跨平台的图形绘制系统,支持不同形状(如圆形、矩形)和不同渲染方式(如矢量渲染、栅格渲染)。抽象部分:形状(如圆形、矩形)。实现部分:渲染方式(如矢量渲染、栅格渲染)。代码示例://实现部分接口interfaceRenderer{voidrenderShape(Stringshape
- H100架构解析与性能优化策略
智能计算研究中心
其他
内容概要NVIDIAH100GPU作为面向高性能计算与人工智能领域的旗舰级产品,其架构设计与优化策略在计算效率、显存带宽及并行任务处理等方面实现了显著突破。本文将从核心架构创新与典型场景调优两个维度展开:首先解析第三代TensorCore的稀疏计算加速机制、FP8混合精度支持特性及其对矩阵运算的优化效果;其次,针对显存子系统中HBM3堆栈布局、L2缓存分区策略以及数据预取算法的协同优化进行拆解;最
- 基于PyTorch的深度学习6——数据处理工具箱2
Wis4e
深度学习pytorch人工智能
torchvision有4个功能模块:model、datasets、transforms和utils。主要介绍如何使用datasets的ImageFolder处理自定义数据集,以及如何使用transforms对源数据进行预处理、增强等。下面将重点介绍transforms及ImageFolder。transforms提供了对PILImage对象和Tensor对象的常用操作。1)对PILImage的常
- DeepSeek源码解析(2)
白鹭凡
deepseekai
Tensor(张量)的介绍在计算机科学和机器学习领域,“张量”(Tensor)是一个数学概念,它被用来表示多维数组。在大模型(如深度学习模型)中,张量扮演着核心角色,具体来说:数据表示:张量用于表示输入数据、模型参数和中间计算结果。例如,在图像处理中,一张图片可以被表示为一个三维张量(高度、宽度、颜色通道数),而在自然语言处理中,一段文本可以被编码为一系列词向量组成的二维张量(句子长度、词向量维度
- vllm多卡部署Qwen2.5-72B-Instruct-GPTQ-Int4
Yanc_L
人工智能
双卡v10032G部署结果如下,推理时长16s3卡,tensor_parallel_size=3,tensor并行的数量一定要能被attentionheads整除4卡,tensor_parallel_size=4,推理速度4s
- ONNX GraphSurgeon详细介绍
Lntano__y
模型部署算法
ONNXGraphSurgeon(ONNX-GS)是一个用于操作和修改ONNX(OpenNeuralNetworkExchange)模型图的Python库。它允许开发者在ONNX模型的图结构中进行修改、优化、插入节点、删除节点以及其他图结构操作,是在深度学习推理部署过程中非常有用的工具。ONNXGraphSurgeon常用于TensorRT中,用来优化和调整ONNX模型,以便于模型可以高效地在GP
- C#在Word表格中插入图片调整大小Debug
觀星
其他c#mswordInlineShapeAddPicture自动调整单元格大小
C#在Word表格中插入图片调整大小Debug一、C#在Word表格中插入图片并调整大小二、设置单元格大小随图片大小变化一、C#在Word表格中插入图片并调整大小C#编程中在word中和Word表格中插入图片是使用InlineShapes.AddPicture方法,方法官方微软说明如下:具体示例代码见本博客下使用C#对Word进行读写、搜索、插入图片等操作文章。在Word中的表格单元格中插入图片后
- k-Shape:高效准确的聚类方法
优化算法侠Swarm-Opti
信号处理故障诊断聚类机器学习人工智能matlab数据挖掘
引言时间数据在许多学科中的扩散和无处不在,已经对时间序列的分析和挖掘产生了极大的兴趣。聚类是最流行的数据挖掘方法之一,不仅因为它的探索性,而且作为其他技术的预处理步骤或子程序。常用的有-means聚类算法。本文介绍了一种新的时间序列聚类算法k-Shape。k-Shape依赖于一个可扩展的迭代优化过程,它创建同质和良好分离的集群。作为距离度量,k-Shape使用标准化的交叉相关。基于距离度量的性质,
- 基于PyTorch的深度学习4——使用numpy实现机器学习vs使用Tensor及Antograd实现机器学习
Wis4e
深度学习机器学习pytorch
首先,给出一个数组x,然后基于表达式y=3x2+2,加上一些噪音数据到达另一组数据y。然后,构建一个机器学习模型,学习表达式y=wx2+b的两个参数w、b。利用数组x,y的数据为训练数据。最后,采用梯度梯度下降法,通过多次迭代,学习到w、b的值。以下为具体步骤:1)导入需要的库。importnumpyasnp%matplotlibinlinefrommatplotlibimportpyplotas
- python可應用在金融分析的那一個方面,如何部署在linux server上面。
蠟筆小新工程師
金融
Python在金融分析中應用廣泛,以下是幾個主要方面:###1.**數據處理與分析**-使用**Pandas**和**NumPy**等庫來處理和分析大規模數據集,進行清理、轉換和統計運算。-舉例:處理歷史市場數據,分析價格趨勢、交易量等。###2.**機器學習與預測**-使用**scikit-learn**、**TensorFlow**或**PyTorch**建立模型進行股票價格預測、信用風險評估
- Ollama Modelfile详解及验证
Karl_zhujt
OllamaOllama
文章目录OllamaModelfile详解及验证1格式2示例2.1基础Modelfile2.2查看Modelfile2.2.1llama3.2Modelfile2.2.2Deepseek-r1:1.5bModelfile3指令3.1FROM(Required)3.1.1从现有模型构建3.1.2从Safetensors模型构建3.1.3从GGUF文件构建3.2PARAMETER3.2.1有效的参数及
- 科技早报 | B站崩了、小红书崩了上热搜;OpenSSH漏洞预警:无需用户交互,可提权至 root | 最新快讯
最新科技快讯
量子计算
本源量子与中国联通签署战略合作协议7月2日,本源量子计算科技(合肥)股份有限公司与中国联合网络通信有限公司签署了战略合作协议。根据协议,双方将携手探索中国自主量子算力在通信领域的应用,致力于推动中国通信事业的创新发展。这一合作标志着双方将在量子技术与通信行业的深度融合上展开实质性合作,共同加速相关技术成果转化和市场拓展。消息称谷歌TensorG5芯片已流片,预计采用3nm制摘要:谷歌下一代Tens
- 李沐深度学习预备知识——数据操作
flex_university
李沐课程学习笔记深度学习人工智能
预备知识——数据操作1、数据操作1.1基本操作importtorchx=torch.arange(12)print(x)print(x.shape)print(x.numel())x=x.reshape(3,4)#变形x=x.reshape(2,-1)#-1代表自动计算torch.zeros((2,3,4))#生成全0张量torch.ones((2,3,4))#生成全1张量torch.randn(
- tensorflow keras 报错 :No gradients provided for any variable 原因与解决办法
研志必有功
tensorflow报错tensorflow深度学习机器学习神经网络自然语言处理
错误分析Nogradientsprovidedforanyvariable这个意思是没有梯度给已知的所有函数,为什么会出现这个错误呢,因为在深度学习中,梯度的更新是由于反向传播算法的实现的,如果损失函数没有与已知的任何(除输入)层关联,那么,损失函数就无法求出关于各个函数的梯度,导致错误解决办法例如损失函数defcontrastive_loss_layer(left_inputs,right_in
- TensorFlow的基本框架和理解-初学者通过这一篇文章就够了
无人不智能,机器不学习
TensorFlowTensorFlow基本框架python
tensorflow的理解Tensorflow是一种机器学习框架,如果我们有大量的数据,我们可以利用他协助医生检查糖尿病性视网膜病变来预防患者失明等应用新版本中一个有趣的功能是eagerexecution,允许用户在不创建图形的情况下运行tensorflow代码,一种动态图机制它是一个命令式、由运行定义的接口,一旦从Python被调用,其操作立即被执行。这使得入门TensorFlow变的更简单,也
- 基于视场角,高度重叠率,选装角度的无人机区域巡检航线规划
1028_左傲杰
无人机
importmathfromshapely.geometryimportPolygon,LineStringdefcalculate_route_with_angle(area_coords,fov_angle,altitude,overlap,line_angle):defline_intersection(p1,p2,p3,p4):"""计算两条线段的交点"""line1=LineString
- antv x6自定义节点(使用vue渲染节点)
m0_55070913
前端htmllinux面试服务器
1、安装@antv/x6-vue-shape#npmnpminstall@antv/x6-vue-shape#yarnyarnadd@antv/x6-vue-shape#在vue2下还需要安装@vue/composition-apiyarnadd@vue/composition-api--dev主文件引入@antv/x6-vue-shapeimport"@antv/x6-vue-shape";安装
- Jetson系列: tensorrt-python推理yolov5(一)
weixin_55083979
jetson系列YOLOpytorch深度学习
目录一.onnx模型导出二.TensorRT模型本地序列化三.算法整体Pipline架构四.算法整体Pipline实现一.onnx模型导出在使用tensorrt进行加速之前需要将自己的torch模型转为onnx格式的,这个操作很基础就不赘述了,自己根据自己的任务、部署设备选择合适的batch/infersize/opsetyolov5官方导出onnx脚本Example:```pythonfromp
- Python 在 AI 领域的应用:从零构建你的第一个 AI 模型
嵌入式Jerry
Pythonpython人工智能开发语言嵌入式硬件windowsubuntu
引言人工智能(AI)已经成为现代科技的核心,而Python是AI领域最受欢迎的编程语言之一。其强大的库和框架,如TensorFlow、PyTorch、scikit-learn,使AI开发变得更加简单高效。本文将带你深入理解Python在AI中的应用,并通过机器学习(MachineLearning)和深度学习(DeepLearning)的实际示例,讲解如何构建一个AI模型。1.Python为什么适合
- 【深度学习模型高效部署】tensorRT_Pro深度解读:部署深度学习模型的高效方案
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习深度学习人工智能tensorRT_ProTensorRT高性能推理机器学习模型部署
以下内容将对tensorRT_Pro项目做一个系统的介绍,包括其核心价值、主要功能、应用案例以及关键的示例代码(附详细解释),帮助你快速了解并上手如何基于TensorRT在NVIDIAGPU上实现高性能推理。一、项目概述GitHub-shouxieai/tensorRT_Pro:C++librarybasedontensorrtintegrationtensorRT_Pro是由开发者shouxie
- 11 【HarmonyOS NEXT】 仿uv-ui组件开发之Avatar组件深度剖析(二)
全栈若城
harmonyos从入门到进阶uvuiubuntuHarmonyOSNEXT
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!第二篇:探秘Avatar组件的核心实现机制1.组件结构设计2.状态管理2.1组件状态定义@ComponentexportstructAvatar{//私有属性privateprops:AvatarProps={shape:AvatarShape.CIRCLE,s
- 介绍 TensorFlow 的基本概念和使用场景。
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
TensorFlow是一个由谷歌开发的开源机器学习框架,广泛应用于深度学习领域。它提供了一个灵活的平台,可以用于构建各种机器学习模型,包括神经网络。TensorFlow的基本概念和使用场景如下:张量(Tensor):TensorFlow中的基本数据结构就是张量,可以简单理解为多维数组。张量可以是标量(0维张量)、向量(1维张量)、矩阵(2维张量)等。在TensorFlow中,所有数据都以张量的形式
- echarts 雷达图配置
我超幸运12138
echartsjavajavascriptvue.js
echarts雷达图配置radar配置radar构建指示器和雷达图的样式配置具体配置说明shape雷达图的形状取值为“circle”表示雷达图的形状为圆形。indicator雷达图的指示器这里未给出具体值,通常是一个数组,每个元素代表一个指标的配置,用于定义雷达图的坐标轴。radius雷达图的半径值为66,表示雷达图的半径大小。可以是具体像素值,也可以是百分比splitArea雷达图的分割区域配置
- 【TVM 教程】使用元组输入(Tuple Inputs)进行计算和归约
编译器编程后端人工智能深度学习
ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:ZihengJiang若要在单个循环中计算具有相同shape的多个输出,或执行多个值的归约,例如argmax。这些问题可以通过元组输入来解决。本教程介绍了TVM中元组输入的用法。from__future__importabsolut
- PyTorch 深度学习快速入门教程
有人给我介绍对象吗
AI论文写作深度学习pytorch人工智能
PyTorch深度学习快速入门教程PyTorch是一个灵活且易用的深度学习框架,支持动态图计算,广泛用于学术研究和工业应用。本教程将带你快速掌握PyTorch的基本用法,涵盖张量(Tensor)操作、自动求导(Autograd)、构建神经网络以及模型训练。1.安装PyTorch在终端或命令行中运行以下命令安装PyTorch:pipinstalltorchtorchvisiontorchaudio安
- 蓝桥杯例题练习(简单)--绘制四叶风车
Nanhuiyu
蓝桥杯pythonpycharm
#利用turtle绘制四叶风车,要求:风车叶子颜色填充为红黄蓝绿,边长100##思路:由于绘制的是四叶风车,因此在绘制时可能存在重复代码段,可以考虑将其嵌入循环之中以节省代码量和人力##基础准备:##turtle.setheading(角度)/turtle.seth(角度),设置画笔朝向,初始朝向为正右,朝向改变为逆时针方向变化##turtle.shape(形状),可以改变画笔的形状##turtl
- 深度学习主流经典框架PyTorch(day2)
inquisitor.dom
深度学习pytorch人工智能
五、Tensor数据转换5.1张量转numpy浅拷贝调用numpy()方法可以把Tensor转换为Numpy,此时内存是共享的。#张量转numpydata_tensor=torch.tensor([[1,2,3],[4,5,6]])data_numpy=data_tensor.numpy()print(type(data_tensor),type(data_numpy))#他们内存是共享的data
- 【AI学习从零至壹】pytorch基础
flyyyya
AI算法人工智能学习pytorch
pytorch基础pytorch基础张量(Tensor)张量的属性张量的索引和切⽚:张量的拼接张量的算数运算单元素张量In-place操作与numpy之间的转换张量到numpy数组计算图静态计算图动态计算图pytorch计算图可视化pytorch基础PyTorch是⼀个开源的深度学习框架,由Facebook的⼈⼯智能研究团队开发和维护,在学术界和⼯业界都得到了⼴泛应⽤。张量(Tensor)张量(T
- 【图像去噪】基础知识之加噪 | 给图像加噪的若干种方式,包括加高斯白噪声(AWGN)、泊松-高斯噪声、模拟真实噪声(SIDD、DND)等
十小大
人工智能计算机视觉深度学习图像处理图像去噪pythonpytorch
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言加高斯噪声(AWGN)在numpy上加在Tensor上加完整代码加其他噪声(模拟真实世界的噪声)加随机散粒噪声和真实噪声(Possion-Gaussian)加SIDD
- 蚂蚁集团可转正实习算法岗内推-自然语言
飞300
业界资讯自然语言处理
具备极佳的工程实现能力,精通C/C++、Java、Pvthon、Perl等至少一门语言:对目前主流的深度学习平台:tensorflow、pytorch、mxnet等,至少对其中一个有上手经验;熟悉深度学习以及常见机器学习算法的原理与算法,能熟练运用聚类、分类、回归、排序等模型解决有挑战性的问题,有大数据处理的实战经验;有强烈求知欲,对人工智能领域相关技术有热情,内推链接:https://u.ali
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出