矢量量化基本原理

        矢量量化(VQ —Vector Quantization)是70年代后期发展起来的一种数据压缩技术基本思想:将若干个标量数据组构成一个矢量,然后在矢量空间给以整体量化,从而压缩了数据而不损失多少信息矢量量化编码也是在图像、语音信号编码技术中研究得较多的新型量化编码方法,它的出现并不仅仅是作为量化器设计而提出的,更多的是将它作为压缩编码方法来研究的。在传统的预测和变换编码中,首先将信号经某种映射变换变成一个数的序列,然后对其一个一个地进行标量量化编码。而在矢量量化编码中,则是把输入数据几个一组地分成许多组,成组地量化编码,即将这些数看成一个k维矢量,然后以矢量为单位逐个矢量进行量化。矢量量化是一种限失真编码,其原理仍可用信息论中的率失真函数理论来分析。而率失真理论指出,即使对无记忆信源,矢量量化编码也总是优于标量量化。

        在矢量量化编码中,关键是码本的建立和码字搜索算法。

        码本的生成算法有两种类型,一种是已知信源分布特性的设计算法;另一种是未知信源分布,但已知信源的一列具有代表性且足够长的样点集合(即训练序列)的设计算法。可以证明,当信源是矢量平衡且遍历时,若训练序列充分长则两种算法是等价的。

        码字搜索是矢量量化中的一个最基本问题,矢量量化过程本身实际上就是一个搜索过程,即搜索出与输入最为匹配的码矢。矢量量化中最常用的搜索方法是全搜索算法和树搜索算法。全搜索算法与码本生成算法是基本相同的,在给定速率下其复杂度随矢量维数K以指数形式增长,全搜索矢量量化器性能好但设备较复杂。树搜索算法又有二叉树和多叉树之分,它们的原理是相同的,但后者的计算量和存储量都比前者大,性能比前者好。树搜索的过程是逐步求近似的过程,中间的码字是起指引路线的作用,其复杂度比全搜索算法显著减少,搜索速度较快。由于树搜索并不是从整个码本中寻找最小失真的码字,因此它的量化器并不是最佳的,其量化信噪比低于全搜索。

来自" http://baike.chinaecnet.com/eewiki/index.php/%E7%9F%A2%E9%87%8F%E9%87%8F%E5%8C%96"

你可能感兴趣的:(矢量量化基本原理)