sift 计算机视觉——描述子

描述子实现代码

这里使用开源工具包VLFeat提供的二进制文件来计算图像的SIFT特征。用完整的Python实现SIFT特征的所有步骤可能效率不是很高。VLFeat工具包可以从http://www.vlfeat.org/下载,二进制文件可以在所有主要的平台上运行。VLFeat库是用C语言来写的,但是我们可以使用该库提供的命令行接口。以在Windows 10 64bit平台上为例,下载的文件为vlfeat-0.9.20-bin.tar.gz,解压缩后,将vlfeat-0.9.20/bin/win64文件夹下的sift.exevl.dll拷贝到当前工作目录下。 
代码如下所示:

# -*- coding: utf-8 -*-
from PIL import Image
from pylab import *
from numpy import *
import os

def process_image(imagename, resultname, params="--edge-thresh 10 --peak-thresh 5"):
    """ 处理一幅图像,然后将结果保存在文件中"""

    if imagename[-3:] != 'pgm':
        #创建一个pgm文件
        im = Image.open(imagename).convert('L')
        im.save('tmp.pgm')
        imagename ='tmp.pgm'
    cmmd = str("sift "+imagename+" --output="+resultname+" "+params)
    os.system(cmmd)
    print 'processed', imagename, 'to', resultname

def read_features_from_file(filename):
    """读取特征属性值,然后将其以矩阵的形式返回"""
    f = loadtxt(filename)
    return f[:,:4], f[:,4:] #特征位置,描述子

def write_featrues_to_file(filename, locs, desc):
    """将特征位置和描述子保存到文件中"""
    savetxt(filename, hstack((locs,desc)))

def plot_features(im, locs, circle=False):
    """显示带有特征的图像
       输入:im(数组图像),locs(每个特征的行、列、尺度和朝向)"""

    def draw_circle(c,r):
        t = arange(0,1.01,.01)*2*pi
        x = r*cos(t) + c[0]
        y = r*sin(t) + c[1]
        plot(x, y, 'b', linewidth=2)

    imshow(im)
    if circle:
        for p in locs:
            draw_circle(p[:2], p[2])
    else: 
        plot(locs[:,0], locs[:,1], 'ob')
    axis('off')

imname = 'empire.jpg'
im1 = array(Image.open(imname).convert('L'))
process_image(imname, 'empire.sift')
l1,d1 = read_features_from_file('empire.sift')

figure()
gray()
plot_features(im1, l1, circle=True)
show()

FileNotFoundError: [Errno 2] No such file or directory: 'empire.sift'

下载旧版,0.9.20,里面有win64版本的,把vlfeat-0.9.20\bin 下面的sift.exe和vl.dll 拷到目录下面就好了了 效果图如下: sift 计算机视觉——描述子_第1张图片

你可能感兴趣的:(sift 计算机视觉——描述子)