SiftMax手写体识别

基本原理:

把图片当成像素来看,下图为手写体数字1的图片,它在计算机中的存储其实是一个二维矩阵,每个元素都是0~1之间的数字,0代表白色,1代表黑色,小数代表某种程度的灰色。

                 SiftMax手写体识别_第1张图片

对MNIST数据集中的图片来说,当成长度为784的向量就可以了,忽略它的二维结构。任务就是让这个向量经过一个函数后输出一个类别。就是下边这个函数,称为Softmax分类器。

           SiftMax手写体识别_第2张图片

这个式子里的图片向量用x表示,长度只有3。乘系数矩阵W,再列向量b,输入softmax函数,输出就是分类结果y。W是一个权重矩阵,W的每一行与整个图片像素相乘的结果是一个分数score,分数越高表示图片越接近该行代表的类别。因此,W x + b 的结果其实是一个列向量,每一行代表图片属于该类的评分。通常分类的结果并非评分,而是概率,表示有多大的概率属于此类别。因此,Softmax函数的作用就是把评分转换成概率,总的概率为1。

CNN

卷积神经网络与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量的神经元组成。卷积神经网络利用输入是图片的特点,把神经元设计成三个维度:width, height, depth(这个depth不是神经网络的深度,而是用来描述神经元的) 。比如输入的图片大小是 32 × 32 × 3 (rgb),那么输入神经元就也具有 32×32×3 的维度。下面是图解:

  SiftMax手写体识别_第3张图片

 

一个卷积神经网络由很多层组成,它们的输入是三维的,输出也是三维的,有的层有参数,有的层不需要参数。

卷积神经网络通常包含以下几种层:

数据输入层:

该层要做的处理主要是对原始图像数据进行预处理,其中包括: 
• 去均值:把输入数据各个维度都中心化为0,如下图所示,其目的就是把样本的中心拉回到坐标系原点上。 
• 归一化:幅度归一化到同样的范围,如下所示,即减少各维度数据取值范围的差异而带来的干扰,比如,我们有两个维度的特征A和B,A范围是0到10,而B范围是0到10000,如果直接使用这两个特征是有问题的,好的做法就是归一化,即A和B的数据都变为0到1的范围。 
• PCA/白化:用PCA降维;白化是对数据各个特征轴上的幅度归一化

卷积层

卷积神经网路中每层卷积层由若干卷积单元组成,每个卷积单元的参数都是通过反向传播算法优化得到的。卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。 

下面的动态图形象地展示了卷积层的计算过程:

                         
    线性整流层这一层神经的活性化函数使用线性整流f(x)=max(0,x)把卷积层输出结果做非线性映射。 
                                 https://images2015.cnblogs.com/blog/1093303/201704/1093303-20170430194934006-705271151.jpg


     池化层(Pooling layer)

通常在卷积层之后会得到维度很大的特征,将特征切成几个区域,取其最大值或平均值,得到新的、维度较小的特征。

池化层的具体作用。

1.特征不变性,也就是我们在图像处理中经常提到的特征的尺度不变性,池化操作就是图像的resize,平时一张狗的图像被缩小了一倍我们还能认出这是一张狗的照片,这说明这张图像中仍保留着狗最重要的特征,我们一看就能判断图像中画的是一只狗,图像压缩时去掉的信息只是一些无关紧要的信息,而留下的信息则是具有尺度不变性的特征,是最能表达图像的特征。

2.特征降维,我们知道一幅图像含有的信息是很大的,特征也很多,但是有些信息对于我们做图像任务时没有太多用途或者有重复,我们可以把这类冗余信息去除,把最重要的特征抽取出来,这也是池化操作的一大作用。

3.在一定程度上防止过拟合,更方便优化。

                                              https://images2015.cnblogs.com/blog/1093303/201704/1093303-20170430195028600-318072954.jpg
   池化层用的方法有Max pooling 和 average pooling,而实际用的较多的是Max pooling。 
全连接层 把所有局部特征结合变成全局特征,用来计算最后每一类的得分。

CNN框架(可选)TensorFlow

实现代码:

#coding:utf8
import os 
import cv2 
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

sess = tf.InteractiveSession()


def getTrain():
    train=[[],[]] # 指定训练集的格式,一维为输入数据,一维为其标签
    # 读取所有训练图像,作为训练集
    train_root="mnist_train" 
    labels = os.listdir(train_root)
    for label in labels:
        imgpaths = os.listdir(os.path.join(train_root,label))
        for imgname in imgpaths:
            img = cv2.imread(os.path.join(train_root,label,imgname),0)
            array = np.array(img).flatten() # 将二维图像平铺为一维图像
            array=MaxMinNormalization(array)
            train[0].append(array)
            label_ = [0,0,0,0,0,0,0,0,0,0]
            label_[int(label)] = 1
            train[1].append(label_)
    train = shuff(train)
    return train

def getTest():
    test=[[],[]] # 指定训练集的格式,一维为输入数据,一维为其标签
    # 读取所有训练图像,作为训练集
    test_root="mnist_test" 
    labels = os.listdir(test_root)
    for label in labels:
        imgpaths = os.listdir(os.path.join(test_root,label))
        for imgname in imgpaths:
            img = cv2.imread(os.path.join(test_root,label,imgname),0)
            array = np.array(img).flatten() # 将二维图像平铺为一维图像
            array=MaxMinNormalization(array)
            test[0].append(array)
            label_ = [0,0,0,0,0,0,0,0,0,0]
            label_[int(label)] = 1
            test[1].append(label_)
    test = shuff(test)
    return test[0],test[1]

def shuff(data):
    temp=[]
    for i in range(len(data[0])):
        temp.append([data[0][i],data[1][i]])
    import random
    random.shuffle(temp)
    data=[[],[]]
    for tt in temp:
        data[0].append(tt[0])
        data[1].append(tt[1])
    return data

count = 0
def getBatchNum(batch_size,maxNum):
    global count
    if count ==0:
        count=count+batch_size
        return 0,min(batch_size,maxNum)
    else:
        temp = count
        count=count+batch_size
        if min(count,maxNum)==maxNum:
            count=0
            return getBatchNum(batch_size,maxNum)
        return temp,min(count,maxNum)
    
def MaxMinNormalization(x):
    x = (x - np.min(x)) / (np.max(x) - np.min(x))
    return x


# 1、权重初始化,偏置初始化
# 为了创建这个模型,我们需要创建大量的权重和偏置项
# 为了不在建立模型的时候反复操作,定义两个函数用于初始化
def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1)#正太分布的标准差设为0.1
    return tf.Variable(initial)
def bias_variable(shape):
    initial = tf.constant(0.1,shape=shape)
    return tf.Variable(initial)


# 2、卷积层和池化层也是接下来要重复使用的,因此也为它们定义创建函数
# tf.nn.conv2d是Tensorflow中的二维卷积函数,参数x是输入,w是卷积的参数
# strides代表卷积模块移动的步长,都是1代表会不遗漏地划过图片的每一个点,padding代表边界的处理方式
# padding = 'SAME',表示padding后卷积的图与原图尺寸一致,激活函数relu()
# tf.nn.max_pool是Tensorflow中的最大池化函数,这里使用2 * 2 的最大池化,即将2 * 2 的像素降为1 * 1的像素
# 最大池化会保留原像素块中灰度值最高的那一个像素,即保留最显著的特征,因为希望整体缩小图片尺寸
# ksize:池化窗口的大小,取一个四维向量,一般是[1,height,width,1]
# 因为我们不想再batch和channel上做池化,一般也是[1,stride,stride,1]
def conv2d(x, w):
    return tf.nn.conv2d(x, w, strides=[1,1,1,1],padding='SAME') # 保证输出和输入是同样大小
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1],padding='SAME')
    
iterNum = 1000
batch_size=1024

print("load train dataset.")
train=getTrain()
print("load test dataset.")
test0,test1=getTest()


# 3、参数
# 这里的x,y_并不是特定的值,它们只是一个占位符,可以在TensorFlow运行某一计算时根据该占位符输入具体的值
# 输入图片x是一个2维的浮点数张量,这里分配给它的shape为[None, 784],784是一张展平的MNIST图片的维度
# None 表示其值的大小不定,在这里作为第1个维度值,用以指代batch的大小,means x 的数量不定
# 输出类别y_也是一个2维张量,其中每一行为一个10维的one_hot向量,用于代表某一MNIST图片的类别
x = tf.placeholder(tf.float32, [None,784], name="x-input")
y_ = tf.placeholder(tf.float32,[None,10]) # 10列


# 4、第一层卷积,它由一个卷积接一个max pooling完成
# 张量形状[5,5,1,32]代表卷积核尺寸为5 * 5,1个颜色通道,32个通道数目
w_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32]) # 每个输出通道都有一个对应的偏置量
# 我们把x变成一个4d 向量其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数(灰度图的通道数为1,如果是RGB彩色图,则为3)
x_image = tf.reshape(x,[-1,28,28,1])
# 因为只有一个颜色通道,故最终尺寸为[-1,28,28,1],前面的-1代表样本数量不固定,最后的1代表颜色通道数量
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1) # 使用conv2d函数进行卷积操作,非线性处理
h_pool1 = max_pool_2x2(h_conv1)                          # 对卷积的输出结果进行池化操作


# 5、第二个和第一个一样,是为了构建一个更深的网络,把几个类似的堆叠起来
# 第二层中,每个5 * 5 的卷积核会得到64个特征
w_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)# 输入的是第一层池化的结果
h_pool2 = max_pool_2x2(h_conv2)

# 6、密集连接层
# 图片尺寸减小到7 * 7,加入一个有1024个神经元的全连接层,
# 把池化层输出的张量reshape(此函数可以重新调整矩阵的行、列、维数)成一些向量,加上偏置,然后对其使用Relu激活函数
w_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1,7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)

# 7、使用dropout,防止过度拟合
# dropout是在神经网络里面使用的方法,以此来防止过拟合
# 用一个placeholder来代表一个神经元的输出
# tf.nn.dropout操作除了可以屏蔽神经元的输出外,
# 还会自动处理神经元输出值的scale,所以用dropout的时候可以不用考虑scale
keep_prob = tf.placeholder(tf.float32, name="keep_prob")# placeholder是占位符
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)


# 8、输出层,最后添加一个softmax层
w_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2, name="y-pred")


# 9、训练和评估模型
# 损失函数是目标类别和预测类别之间的交叉熵
# 参数keep_prob控制dropout比例,然后每100次迭代输出一次日志
cross_entropy = tf.reduce_sum(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 预测结果与真实值的一致性,这里产生的是一个bool型的向量
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
# 将bool型转换成float型,然后求平均值,即正确的比例
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 初始化所有变量,在2017年3月2号以后,用 tf.global_variables_initializer()替代tf.initialize_all_variables()
sess.run(tf.initialize_all_variables())

# 保存最后一个模型
saver = tf.train.Saver(max_to_keep=1)


for i in range(iterNum):
    for j in range(int(len(train[1])/batch_size)):
        imagesNum=getBatchNum(batch_size,len(train[1]))
        batch = [train[0][imagesNum[0]:imagesNum[1]],train[1][imagesNum[0]:imagesNum[1]]]
        train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    if i % 2 == 0:
        train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1],keep_prob: 1.0})
        print("Step %d ,training accuracy %g" % (i, train_accuracy))
print("test accuracy %f " % accuracy.eval(feed_dict={x: test0, y_:test1, keep_prob: 1.0})) 
# 保存模型于文件夹
saver.save(sess,"save/model")

                               

可以看到,测试准确性高达99%,这也意味着该模型对于预测训练得很好。对整个过程训练和测试过程进行可视化,即画出训练和测试的准确曲线与损失函数曲线,如下所示。从图中可以看到,随着训练迭代次数的增加,模型在训练和测试数据上的损失和准确性趋于一致,模型最终趋于稳定。

对一些不确定,容易写错的数字进行测试

SiftMax手写体识别_第4张图片SiftMax手写体识别_第5张图片SiftMax手写体识别_第6张图片SiftMax手写体识别_第7张图片SiftMax手写体识别_第8张图片SiftMax手写体识别_第9张图片SiftMax手写体识别_第10张图片SiftMax手写体识别_第11张图片

当只放200张图片训练,由于个人写字习惯不同,原本应该是4的识别却是6

就是因为训练得分低进而准确概率偏小以至于识别不准确。

SiftMax手写体识别_第12张图片

按0来说,这个容易被识别成6,但是我们训练集有几万张图片,训练完成精准率高,识别准确率也会相应高。

 SiftMax手写体识别_第13张图片 SiftMax手写体识别_第14张图片 

你可能感兴趣的:(python)