来自独秀同学的深度网络数学笔记,还不快收藏?

如今,我们已经拥有了许多高级的、专业的神经网络程序库和框架,例如:Keras、TensorFlow 或 Pytorch。我们不需要时刻担心权值矩阵的规模,也不需要记住我们决定使用的激活函数的导数公式。通常,我们所需要做的就是创建一个神经网络。即使是一个结构非常复杂的网络,也只需要导入少量程序包和几行代码就能实现。这节省了我们查找漏洞的时间,提高了工作效率。然而,关于神经网络内部工作原理的知识对架构选择、超参数调优以及优化等任务有很大帮助。

引言

为了更加深入地了解神经网络的工作原理,我决定在这个夏天花一些时间看一看隐藏在模型背后的数学原理。我还决定写一篇文章将新学到的信息组织起来,帮助自己和他人理解这些难以理解的概念。对于那些对代数或微积分不太熟悉的人,我会尽量叙述地容易理解一些。正如标题所示,本文涉及到很多数学知识。

来自独秀同学的深度网络数学笔记,还不快收藏?_第1张图片

图 1. 训练集的可视化

举例而言,我们将解决如上面图 1 所示的数据集的二分类问题。从属于这两种类别的点形成了圆圈,这种数据的组织形式对于很多传统机器学习算法来说很不方便,但是一个小型神经网络却可能利用这种数据很好地工作。为了解决这个问题,我们将使用具有图 2 所示的结构的神经网络——五个全连接层,每层的节点数不一。我们将在隐藏层中使用 ReLU 作为激活函数,在输出层中则使用 Sigmoid 函数。这是一个十分简单的网络架构,但其复杂程度已经足以帮助我们应对上述问题。

来自独秀同学的深度网络数学笔记,还不快收藏?_第2张图片

图 2. 神经网络架构

Keras 的解决方案

首先,我将展示使用目前最流行的机器学习库之一——Keras 实现的解决方案。

from keras.models import Sequential

from keras.layers import Dense

model = Sequential

model.add(Dense(4, input_dim=2,activation='relu'))

model.add(Dense(6, activation='relu'))

model.add(Dense(6, activation='relu'))

model.add(Dense(4, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

model.fit(X_train, y_train, epochs=50, verbose=0)

解决方案就是如此。正如我在引言中提到的,我们只需要引入少量的程序包、写上几行代码就足以创建并训练一个模型,该模型能够以接近 100% 的准确率对我们测试集中的数据进行分类。我们的任务可以归结为根据选定的网络架构提供超参数(网络层数、每一层中神经元的数量、激活函数或 epoch 的数量)。现在让我们看看表面的框架背后发生了什么。而且,为了防止你打瞌睡,我为学习过程创建了一个很酷的可视化演示样例。

来自独秀同学的深度网络数学笔记,还不快收藏?_第3张图片

图 3. 在训练过程中,从属于某一类别的区域的可视化过程

什么是神经网络?

让我们首先回答一个关键的问题:什么是神经网络?这是一种受到生物学启发而构建能够进行学习并且独立找出数据之间联系的计算机程序的方法。如图 2 所示,网络就是一个以层次的形式组织起来的软件「神经元」的集合,神经元以一种可以进行通信的方式连接起来。

单个神经元

每个神经元接受一组 x 值(从 x_1 到 x_n)作为输入,然后计算出预测的 y^ 值。向量 *x *实际上包含训练集的 m 个样本中某个样本的特征值。此外,每个神经元都有一套自己的参数,这些参数通常指的是 w(权值的列向量)以及 b(偏置),在学习过程中参数会不断变化。在每一轮迭代中,神经元会根据目前的权值向量 w 加上偏置计算出 x 向量值的加权平均。最后,计算结果会被传递给一个非线性的激活函数 g。在本文后面的部分,我将稍微提到一些目前最流行的激活函数。

来自独秀同学的深度网络数学笔记,还不快收藏?_第4张图片

图 4. 单个神经元

单个网络层

现在,让我们考虑稍微大一点的结构,看看如何对神经网络中的某一整层进行计算。我们将利用我们对于单个神经元中计算过程的知识,并且对整个层进行向量化,从而将这些计算组合成矩阵方程。为了统一符号,我们为选定的层「l」写出这些方程。此外,下标 i 表示某神经元在这一层中的序号。

来自独秀同学的深度网络数学笔记,还不快收藏?_第5张图片

图 5. 单个网络层

请注意:我们使用 *x *和 y^ 书写单个神经元的方程,它们分别表示特征的列向量以及预测值。当我们转而对每一层的计算进行表示时,我们月入十万赚钱行业,如果你想月入十万微信一商一耳零漆二零久巴零使用向量 *a *代表这一层的激活结果。因此,向量 *x *是第 0 层(输入层)的激活结果。层中的每个神经元将根据以下方程进行类似的计算:

为了让读者更清晰地理解,我们将第二层的方程展开如下:

来自独秀同学的深度网络数学笔记,还不快收藏?_第6张图片

如你所见,在每一层中,我们都会执行许多非常相似的计算。使用「for 循环」执行这种计算的效率并不高,所以我们在这里使用向量化处理来加速计算过程。首先,我们通过将转置后的权值 w 的水平向量重叠起来得到矩阵 *W*。类似地,我们将层中的每个神经元的偏置重叠起来去创建垂直向量 *b*。现在,我们就可以一次性地直接为层中的所有神经元执行计算过程。我们同时会在下面写出用到的矩阵和向量的维度。

你可能感兴趣的:(来自独秀同学的深度网络数学笔记,还不快收藏?)