(升级)Sharding-JDBC 第二章 执行原理

3.1 基本概念

在了解Sharding-JDBC的执行原理前,需要了解以下概念:
逻辑表
水平拆分的数据表的总称。例:订单数据表根据主键尾数拆分为10张表,分别是 t_order_0 、 t_order_1 到 t_order_9 ,他们的逻辑表名为 t_order 。
真实表
在分片的数据库中真实存在的物理表。即上个示例中的 t_order_0 到 t_order_9 。
数据节点
数据分片的最小物理单元。由数据源名称和数据表组成,例: ds_0.t_order_0。
绑定表
指分片规则一致的主表和子表。例如: t_order 表和 t_order_item 表,均按照 order_id 分片,绑定表之间的分区 键完全相同,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出现笛卡尔积关联,关联查询效率将大 大提升。举例说明,如果SQL为:

   SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.order_id in (10,
   11);

在不配置绑定表关系时,假设分片键 order_id 将数值10路由至第0片,将数值11路由至第1片,那么路由后的SQL 应该为4条,它们呈现为笛卡尔积:

   SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in
   (10, 11);
   SELECT i.* FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in
   (10, 11);
   SELECT i.* FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in
   (10, 11);
   SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in
   (10, 11);

在配置绑定表关系后,路由的SQL应该为2条:

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in
   (10, 11);
   SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in
(10, 11);

广播表
指所有的分片数据源中都存在的表,表结构和表中的数据在每个数据库中均完全一致。适用于数据量不大且需要与
海量数据的表进行关联查询的场景,例如:字典表。
分片键
用于分片的数据库字段,是将数据库(表)水平拆分的关键字段。例:将订单表中的订单主键的尾数取模分片,则订 单主键为分片字段。 SQL中如果无分片字段,将执行全路由,性能较差。 除了对单分片字段的支持,Sharding- Jdbc也支持根据多个字段进行分片。
分片算法
通过分片算法将数据分片,支持通过 = 、 BETWEEN 和 IN 分片。分片算法需要应用方开发者自行实现,可实现的灵 活度非常高。包括:精确分片算法 、范围分片算法 ,复合分片算法 等。例如:where order_id = ? 将采用精确分 片算法,where order_id in (?,?,?)将采用精确分片算法,where order_id BETWEEN ? and ? 将采用范围分片算 法,复合分片算法用于分片键有多个复杂情况。
分片策略
包含分片键和分片算法,由于分片算法的独立性,将其独立抽离。真正可用于分片操作的是分片键 + 分片算法,也 就是分片策略。内置的分片策略大致可分为尾数取模、哈希、范围、标签、时间等。由用户方配置的分片策略则更 加灵活,常用的使用行表达式配置分片策略,它采用Groovy表达式表示,如: t_user_$->{u_id % 8} 表示t_user 表根据u_id模8,而分成8张表,表名称为 t_user_0 到 t_user_7 。
自增主键生成策略
通过在客户端生成自增主键替换以数据库原生自增主键的方式,做到分布式主键无重复。

3.2.SQL解析

当Sharding-JDBC接受到一条SQL语句时,会陆续执行 SQL解析 => 查询优化 => SQL路由 => SQL改写 => SQL执行 =>
结果归并 ,最终返回执行结果。
(升级)Sharding-JDBC 第二章 执行原理_第1张图片
SQL解析过程分为词法解析和语法解析,这个同java文件的编译过程。 词法解析器用于将SQL拆解为不可再分的原子符号,称为Token。并根据 不同数据库方言所提供的字典,将其归类为关键字,表达式,字面量和操作符。 再使用语法解析器将SQL转换为抽 象语法树。
例如,以下SQL:

SELECT id, name FROM t_user WHERE status = 'ACTIVE' AND age > 18

解析之后的为抽象语法树见下图:
(升级)Sharding-JDBC 第二章 执行原理_第2张图片
为了便于理解,抽象语法树中的关键字的Token用绿色表示,变量的Token用红色表示,灰色表示需要进一步拆 分。
最后,通过对抽象语法树的遍历去提炼分片所需的上下文,并标记有可能需要SQL改写(后边介绍)的位置。 供分片 使用的解析上下文包含查询选择项(Select Items)、表信息(Table)、分片条件(Sharding Condition)、自增 主键信息(Auto increment Primary Key)、排序信息(Order By)、分组信息(Group By)以及分页信息 (Limit、Rownum、Top)。

3.3.SQL路由

SQL路由就是把针对逻辑表的数据操作映射到对数据结点操作的过程。
根据解析上下文匹配数据库和表的分片策略,并生成路由路径。 对于携带分片键的SQL,根据分片键操作符不同可以划分为单片路由(分片键的操作符是等号)、多片路由(分片键的操作符是IN)和范围路由(分片键的操作符是 BETWEEN),不携带分片键的SQL则采用广播路由。根据分片键进行路由的场景可分为直接路由、标准路由、笛卡尔路由等。

  1. 标准路由
    标准路由是Sharding-Jdbc最为推荐使用的分片方式,它的适用范围是不包含关联查询或仅包含绑定表之间关联查 询的SQL。 当分片运算符是等于号时,路由结果将落入单库(表),当分片运算符是BETWEEN或IN时,则路由结果不一定落入唯一的库(表),因此一条逻辑SQL最终可能被拆分为多条用于执行的真实SQL。 举例说明,如果按照 order_id 的奇数和偶数进行数据分片,一个单表查询的SQL如下:
SELECT * FROM t_order WHERE order_id IN (1, 2);

那么路由的结果应为:

SELECT * FROM t_order_0 WHERE order_id IN (1, 2);
SELECT * FROM t_order_1 WHERE order_id IN (1, 2);

绑定表的关联查询与单表查询复杂度和性能相当。举例说明,如果一个包含绑定表的关联查询的SQL如下:

SELECT * FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE order_id IN (1, 2);

那么路由的结果应为:

SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id  WHERE order_id IN (1,
   2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id  WHERE order_id IN (1,
   2);

可以看到,SQL拆分的数目与单表是一致的。

  1. 笛卡尔路由
    笛卡尔路由是最复杂的情况,它无法根据绑定表的关系定位分片规则,因此非绑定表之间的关联查询需要拆解为笛 卡尔积组合执行。 如果上个示例中的SQL并未配置绑定表关系,那么路由的结果应为:
SELECT * FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id  WHERE order_id IN (1,
   2);
SELECT * FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id  WHERE order_id IN (1,
   2);
SELECT * FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id  WHERE order_id IN (1,
   2);
SELECT * FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id  WHERE order_id IN (1,
   2);

笛卡尔路由查询性能较低,需谨慎使用。

  1. 全库表路由
    对于不携带分片键的SQL,则采取广播路由的方式。根据SQL类型又可以划分为全库表路由、全库路由、全实例路 由、单播路由和阻断路由这5种类型。其中全库表路由用于处理对数据库中与其逻辑表相关的所有真实表的操作, 主要包括不带分片键的DQL(数据查询)和DML(数据操纵),以及DDL(数据定义)等。例如:
SELECT * FROM t_order WHERE good_prority IN (1, 10);

则会遍历所有数据库中的所有表,逐一匹配逻辑表和真实表名,能够匹配得上则执行。路由后成为

SELECT * FROM t_order_0 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_1 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_2 WHERE good_prority IN (1, 10);
SELECT * FROM t_order_3 WHERE good_prority IN (1, 10);

3.4.SQL改写

工程师面向逻辑表书写的SQL,并不能够直接在真实的数据库中执行,SQL改写用于将逻辑SQL改写为在真实数据
库中可以正确执行的SQL。
如一个简单的例子,若逻辑SQL为:

SELECT order_id FROM t_order WHERE order_id=1;

假设该SQL配置分片键order_id,并且order_id=1的情况,将路由至分片表1。那么改写之后的SQL应该为:

SELECT order_id FROM t_order_1 WHERE order_id=1;

再比如,Sharding-JDBC需要在结果归并时获取相应数据,但该数据并未能通过查询的SQL返回。 这种情况主要是 针对GROUP BY和ORDER BY。结果归并时,需要根据 GROUP BY 和 ORDER BY 的字段项进行分组和排序,但如果原 始SQL的选择项中若并未包含分组项或排序项,则需要对原始SQL进行改写。 先看一下原始SQL中带有结果归并所需信息的场景:

SELECT order_id, user_id FROM t_order ORDER BY user_id;

由于使用user_id进行排序,在结果归并中需要能够获取到user_id的数据,而上面的SQL是能够获取到user_id数据
的,因此无需补列。
如果选择项中不包含结果归并时所需的列,则需要进行补列,如以下SQL:

SELECT order_id FROM t_order ORDER BY user_id;

由于原始SQL中并不包含需要在结果归并中需要获取的user_id,因此需要对SQL进行补列改写。补列之后的SQL 是:

SELECT order_id, user_id AS ORDER_BY_DERIVED_0 FROM t_order ORDER BY user_id;

3.5.SQL执行

Sharding-JDBC采用一套自动化的执行引擎,负责将路由和改写完成之后的真实SQL安全且高效发送到底层数据源 执行。 它不是简单地将SQL通过JDBC直接发送至数据源执行;也并非直接将执行请求放入线程池去并发执行。它 更关注平衡数据源连接创建以及内存占用所产生的消耗,以及最大限度地合理利用并发等问题。 执行引擎的目标是 自动化的平衡资源控制与执行效率,他能在以下两种模式自适应切换:

  1. 内存限制模式
    使用此模式的前提是,Sharding-JDBC对一次操作所耗费的数据库连接数量不做限制。 如果实际执行的SQL需要对 某数据库实例中的200张表做操作,则对每张表创建一个新的数据库连接,并通过多线程的方式并发处理,以达成执行效率最大化。
  2. 连接限制模式
    使用此模式的前提是,Sharding-JDBC严格控制对一次操作所耗费的数据库连接数量。 如果实际执行的SQL需要对 某数据库实例中的200张表做操作,那么只会创建唯一的数据库连接,并对其200张表串行处理。 如果一次操作中 的分片散落在不同的数据库,仍然采用多线程处理对不同库的操作,但每个库的每次操作仍然只创建一个唯一的数 据库连接。
    内存限制模式适用于OLAP操作,可以通过放宽对数据库连接的限制提升系统吞吐量; 连接限制模式适用于OLTP操 作,OLTP通常带有分片键,会路由到单一的分片,因此严格控制数据库连接,以保证在线系统数据库资源能够被 更多的应用所使用,是明智的选择。

3.6.结果归并

将从各个数据节点获取的多数据结果集,组合成为一个结果集并正确的返回至请求客户端,称为结果归并。
Sharding-JDBC支持的结果归并从功能上可分为遍历、排序、分组、分页和聚合5种类型,它们是组合而非互斥的关系。
归并引擎的整体结构划分如下图。
(升级)Sharding-JDBC 第二章 执行原理_第3张图片
结果归并从结构划分可分为流式归并、内存归并和装饰者归并。流式归并和内存归并是互斥的,装饰者归并可以在 流式归并和内存归并之上做进一步的处理。
内存归并很容易理解,他是将所有分片结果集的数据都遍历并存储在内存中,再通过统一的分组、排序以及聚合等 计算之后,再将其封装成为逐条访问的数据结果集返回。
流式归并是指每一次从数据库结果集中获取到的数据,都能够通过游标逐条获取的方式返回正确的单条数据,它与 数据库原生的返回结果集的方式最为契合。

下边举例说明排序归并的过程,如下图是一个通过分数进行排序的示例图,它采用流式归并方式。 图中展示了3张 表返回的数据结果集,每个数据结果集已经根据分数排序完毕,但是3个数据结果集之间是无序的。 将3个数据结果集的当前游标指向的数据值进行排序,并放入优先级队列,t_score_0的第一个数据值最大,t_score_2的第一个 数据值次之,t_score_1的第一个数据值最小,因此优先级队列根据t_score_0,t_score_2和t_score_1的方式排序 队列。
(升级)Sharding-JDBC 第二章 执行原理_第4张图片
下图则展现了进行next调用的时候,排序归并是如何进行的。 通过图中我们可以看到,当进行第一次next调用 时,排在队列首位的t_score_0将会被弹出队列,并且将当前游标指向的数据值(也就是100)返回至查询客户端, 并且将游标下移一位之后,重新放入优先级队列。 而优先级队列也会根据t_score_0的当前数据结果集指向游标的 数据值(这里是90)进行排序,根据当前数值,t_score_0排列在队列的最后一位。 之前队列中排名第二的 t_score_2的数据结果集则自动排在了队列首位。

在进行第二次next时,只需要将目前排列在队列首位的t_score_2弹出队列,并且将其数据结果集游标指向的值返 回至客户端,并下移游标,继续加入队列排队,以此类推。 当一个结果集中已经没有数据了,则无需再次加入队列。
(升级)Sharding-JDBC 第二章 执行原理_第5张图片
可以看到,对于每个数据结果集中的数据有序,而多数据结果集整体无序的情况下,Sharding-JDBC无需将所有的 数据都加载至内存即可排序。 它使用的是流式归并的方式,每次next仅获取唯一正确的一条数据,极大的节省了 内存的消耗。
装饰者归并是对所有的结果集归并进行统一的功能增强,比如归并时需要聚合SUM前,在进行聚合计算前,都会通 过内存归并或流式归并查询出结果集。因此,聚合归并是在之前介绍的归并类型之上追加的归并能力,即装饰者模式。

3.7 总结

通过以上内容介绍,相信大家已经了解到Sharding-JDBC基础概念、核心功能以及执行原理。
基础概念:逻辑表,真实表,数据节点,绑定表,广播表,分片键,分片算法,分片策略,主键生成策略 核心功能:数据分片,读写分离
执行流程: SQL解析 => 查询优化 => SQL路由 => SQL改写 => SQL执行 => 结果归并
接下来我们将通过一个个demo,来演示Sharding-JDBC实际使用方法。

4.水平分表

前面已经介绍过,水平分表是在同一个数据库内,把同一个表的数据按一定规则拆到多个表中。在快速入门里,我 们已经对水平分库进行实现,这里不再重复介绍。

5.水平分库

前面已经介绍过,水平分库是把同一个表的数据按一定规则拆到不同的数据库中,每个库可以放在不同的服务器上。接下来看一下如何使用Sharding-JDBC实现水平分库,咱们继续对快速入门中的例子进行完善。
(1)将原有order_db库拆分为order_db_1、order_db_2
(升级)Sharding-JDBC 第二章 执行原理_第6张图片
(2)分片规则修改
由于数据库拆分了两个,这里需要配置两个数据源。
分库需要配置分库的策略,和分表策略的意义类似,通过分库策略实现数据操作针对分库的数据库进行操作。

# 定义多个数据源 
spring.shardingsphere.datasource.names = m1,m2
   spring.shardingsphere.datasource.m1.type = com.alibaba.druid.pool.DruidDataSource
   spring.shardingsphere.datasource.m1.driver‐class‐name = com.mysql.jdbc.Driver
   spring.shardingsphere.datasource.m1.url = jdbc:mysql://localhost:3306/order_db_1?useUnicode=true
   spring.shardingsphere.datasource.m1.username = root
   spring.shardingsphere.datasource.m1.password = root
   spring.shardingsphere.datasource.m2.type = com.alibaba.druid.pool.DruidDataSource
   spring.shardingsphere.datasource.m2.driver‐class‐name = com.mysql.jdbc.Driver
   spring.shardingsphere.datasource.m2.url = jdbc:mysql://localhost:3306/order_db_2?useUnicode=true
   spring.shardingsphere.datasource.m2.username = root
   spring.shardingsphere.datasource.m2.password = root
...
# 分库策略,以user_id为分片键,分片策略为user_id % 2 + 1,user_id为偶数操作m1数据源,否则操作m2。 spring.shardingsphere.sharding.tables.t_order.database‐strategy.inline.sharding‐column = user_id spring.shardingsphere.sharding.tables.t_order.database‐strategy.inline.algorithm‐expression = m$‐>{user_id % 2 + 1}

分库策略定义方式如下:

#分库策略,如何将一个逻辑表映射到多个数据源 
spring.shardingsphere.sharding.tables.<逻辑表名称>.database‐strategy.<分片策略>.<分片策略属性名>= # 分片策略属性值
#分表策略,如何将一个逻辑表映射为多个实际表 
spring.shardingsphere.sharding.tables.<逻辑表名称>.table‐strategy.<分片策略>.<分片策略属性名>= #分 片策略属性值

Sharding-JDBC支持以下几种分片策略:
不管理分库还是分表,策略基本一样。

  • standard

standard:标准分片策略,对应StandardShardingStrategy。提供对SQL语句中的=, IN和BETWEEN AND的 分片操作支持。StandardShardingStrategy只支持单分片键,提供PreciseShardingAlgorithm和 RangeShardingAlgorithm两个分片算法。PreciseShardingAlgorithm是必选的,用于处理=和IN的分片。 RangeShardingAlgorithm是可选的,用于处理BETWEEN AND分片,如果不配置 RangeShardingAlgorithm,SQL中的BETWEEN AND将按照全库路由处理。

  • complex
    complex:符合分片策略,对应ComplexShardingStrategy。复合分片策略。提供对SQL语句中的=, IN和 BETWEEN AND的分片操作支持。ComplexShardingStrategy支持多分片键,由于多分片键之间的关系复 杂,因此并未进行过多的封装,而是直接将分片键值组合以及分片操作符透传至分片算法,完全由应用开发 者实现,提供最大的灵活度。

  • inline
    inline:行表达式分片策略,对应InlineShardingStrategy。使用Groovy的表达式,提供对SQL语句中的=和 IN的分片操作支持,只支持单分片键。对于简单的分片算法,可以通过简单的配置使用,从而避免繁琐的Java 代码开发,如: t_user_$->{u_id % 8} 表示t_user表根据u_id模8,而分成8张表,表名称为 t_user_0 到t_user_7 。

  • hint
    hint:Hint分片策略,对应HintShardingStrategy。通过Hint而非SQL解析的方式分片的策略。对于分片字段 非SQL决定,而由其他外置条件决定的场景,可使用SQL Hint灵活的注入分片字段。例:内部系统,按照员工 登录主键分库,而数据库中并无此字段。SQL Hint支持通过Java API和SQL注释(待实现)两种方式使用。 none:不分片策略,对应NoneShardingStrategy。不分片的策略。
    目前例子中都使用inline分片策略,若对其他分片策略细节若感兴趣,请查阅官方文档: https://shardingsphere.apache.org

(3)插入测试

修改testInsertOrder方法,插入数据中包含不同的user_id

@Test
   public void testInsertOrder(){
       for (int i = 0 ; i<10; i++){
           orderDao.insertOrder(new BigDecimal((i+1)*5),1L,"WAIT_PAY");
       }
       for (int i = 0 ; i<10; i++){
           orderDao.insertOrder(new BigDecimal((i+1)*10),2L,"WAIT_PAY");
} }

执行testInsertOrder:
(升级)Sharding-JDBC 第二章 执行原理_第7张图片
通过日志可以看出,根据user_id的奇偶不同,数据分别落在了不同数据源,达到目标。

(4)查询测试

调用快速入门的查询接口进行测试:

List<Map> selectOrderbyIds(@Param("orderIds")List<Long> orderIds);

通过日志发现,sharding-jdbc将sql路由到m1和m2:
问题分析: 由于查询语句中并没有使用分片键user_id,所以sharding-jdbc将广播路由到每个数据结点。 下边我们在sql中添加分片键进行查询。
在OrderDao中定义接口:

@Select({""
  })
  List<Map> selectOrderbyUserAndIds(@Param("userId") Integer userId,@Param("orderIds")List<Long>
  orderIds);

尽量带上分片键

6.垂直分库

前面已经介绍过,垂直分库是指按照业务将表进行分类,分布到不同的数据库上面,每个库可以放在不同的服务器
上,它的核心理念是专库专用,与微服务架构中的每个服务都有自己的表相对应的,采用微服务架构时,一般不会用Sharding-JDBC进行查询,而是在service服务层进行微服务调用而实现功能。

7.公共表

公共表属于系统中数据量较小,变动少,而且属于高频联合查询的依赖表。参数表、数据字典表等属于此类型。可 以将这类表在每个数据库都保存一份,所有更新操作都同时发送到所有分库执行。接下来看一下如何使用 Sharding-JDBC实现公共表(略)。正常情况下,公共资源是一个微服务模块,并且通过分布式缓存(redis)或应用缓存(ehcache)来实现。

参考:
链接:https://pan.baidu.com/s/1bKkoE-SwgcRfRuuztUSH1A 密码:ltui

你可能感兴趣的:(ShardingJDBC)