matlab生成随机数函数

1. MATLAB 函数 rand

产生在区间 (0, 1)的均匀随机数,它是平均分布在 (0,1)之间。一个称为seed的值则是用来控制产生随机数的次数。均匀随机数函数的语法为rand(n),rand(m,n),其结果分别产生一矩阵含n×n个随机数和一矩阵含m×n的随机数。注意每次产生随机数的值都不会一样,这些值代表的是随机且不可预期的,这正是我们用随机数的目的。我们可利用这些随机数代入算式中,来表示某段讯号的不规则振幅或是某个事件出现的机率。均匀随机数其值平均的分布于一区间的特性可以从其统计密度函数(probabilitydensity function, PDF)说明。从其PDF分布类似长条图的分布,可以看出其每一个随机数值出现的机率皆相同,所以它被称为均匀随机数。

见以下的例子:

>> rand(1,6) % 第一次使用随机数产生器

ans =

0.2190 0.0470 0.6789 0.6793 0.9347 0.3835

>>hist(ans) % 看看长条图的长相

>>plot(ans) % 比较上个图与这个图有何差异?何者能代表不规则数据的分布

>> rand(1,6) % 第二次使用随机数产生器,注意每次产生的随机数值皆不同

ans =

0.5194 0.8310 0.0346 0.0535 0.5297 0.6711

因为每次随机数产生的值皆不同,如果因为验证算式需要确定所使用的随机数值是相同的,可以利用seed这个选项,用以设定使用计算随机数产生器的起始值,其语法为rand('seed',n)n的规定是。其中n=0有特别意义是使用第一次产生随机数值的起始值(=931316785),其它的n值即是所使用起始值。如果使用相同的起始值,则随机数值会一样,因为随机数的计算是依据起始值。请看以下的例子:

>> rand('seed',0) % 将随机数值的起始值重设,相当于是第一次产生随机数值

>>rand('seed') % 显示现在使用的 seed =931316785

ans =

931316785

>> rand(2,3) % 注意随机数值的上下限介于 [0,1] 区间

ans =

0.2190 0.6789 0.9347

0.0470 0.6793 0.3835

>> rand('seed') % 显示再产生随机数值所用的seed=412659990

ans =

412659990

>> rand('seed',0)

>> rand(1,6)

ans =

0.2190 0.0470 0.6789 0.6793 0.9347 0.3835

>> rand('seed',100) % 设定随机数值的起始值=100

>> rand('seed')

ans =

100

>> rand(2,5)

ans =

0.2909 0.0395 0.3671 0.5968 0.9253

0.0484 0.5046 0.9235 0.8085 0.3628

如果需要产生随机数值不是介于[0,1]区间,可以采用以下步骤将随机数值从[0,1]区间转换到其它区间。假设要得到一组随机数值是介于[2,4]区间,我们先产生一组随机数介于[0,1]区间 ,再将其值乘以2,因为2等于区间上下限的差值(4-2)。接著再加上下限值(2),即可得到随机数值是介于[2,4]区间。例如区间为[a,b]a为下限值,b为上限值。则算式如下

x=(b-a)*r + a,

其中x代表转换后的随机数值的阵列。请看下列示范:

>>data_1 = 2*rand(1,500)+2; %原随机数值有500

>>plot(data_1) %这个图是否看来眼熟?

>>axis([1 500 0 6]) %调整横轴/纵轴上下限

>>hist(data_1) %看看其长条图

 

2.  MATLAB 函数randn

产生常态随机数,它是以高斯分布在随机数出现的上下限区间。常态随机数其值分布于一区间的特性可以从其统计密度函数(PDF)说明。从其 PDF分布可以看出其每一个随机数值出现的机率皆不相同,靠近中间的随机数值出现的机率比起两端的值要高,这是一般不规则现象较可能出现的情形,所以它被称为常态随机数。由于常态随机数并非以上下限来定义,它是用数据的平均值和方差定义之。因此在产生一常态随机数时,需设定平均值和方差的大小。randn(n)randn(n,m)是分别产生一矩阵含n×n个随机数和一矩阵含m×n的常态随机数,其平均值为0方差为1

见以下的例子:

>> x=-2.9:0.2:2.9; % 这个例子用到 hist 函数来画出二种随机数的分布图

>> y=randn(1,5000);

>> hist(y,x)

>> title('Histogram of Normal Random Data')

>> y1=rand(1,5000);

>> hist(y1,x)

>> title('Histogram of Uniform Random Data')

如果需要产生常态随机数值的平均值和方差并非01,可以采用以下步骤将平均值和方差做转换。假设要得到一组常态随机数值的平均值为b和方差为a,我们先产生一组随机数r,再将其值乘以方差a。接著再加平均值b。算式如下:

x=a*r + b

其中x代表转换后的随机数值的阵列。请看下列示范:

>>data_2 = randn(1,500)+3 %原随机数值有500

>>plot(data_2) %这个图是否看来眼熟?

>>axis([1 500 0 6])

>>hist(data_2) %看看其长条图

3.randperm(n)

产生一个1到n之间自然数的随机排列

4.randint(m,n,[1 N])

生成m×n的在1到N之间的随机整数矩阵,其效果与randint(m,n,N+1)相同。

你可能感兴趣的:(matlab,matlab,plot,random,function)