算法思想:分治算法

分治算法(divide and conquer)的核心思想其实就是四个字,分而治之 ,也就是将原问题划分成 n 个规模较小,并且结构与原问题相似的子问题,递归地解决这些子问题,然后再合并其结果,就得到原问题的解。

这个定义看起来有点类似递归的定义。关于分治和递归的区别,我们在排序(下)的时候讲过,分治算法是一种处理问题的思想,递归是一种编程技巧。实际上,分治算法一般都比较适合用递归来实现。分治算法的递归实现中,每一层递归都会涉及这样三个操作:

分解:将原问题分解成一系列子问题;

解决:递归地求解各个子问题,若子问题足够小,则直接求解;

合并:将子问题的结果合并成原问题。

分治算法能解决的问题,一般需要满足下面这几个条件:

原问题与分解成的小问题具有相同的模式;

原问题分解成的子问题可以独立求解,子问题之间没有相关性,这一点是分治算法跟动态规划的明显区别,等我们讲到动态规划的时候,会详细对比这两种算法;

具有分解终止条件,也就是说,当问题足够小时,可以直接求解;

可以将子问题合并成原问题,而这个合并操作的复杂度不能太高,否则就起不到减小算法总体复杂度的效果了。

分治算法应用举例分析

理解分治算法的原理并不难,但是要想灵活应用并不容易。所以,接下来,我会带你用分治算法解决我们在讲排序的时候涉及的一个问题,加深你对分治算法的理解。

还记得我们在排序算法里讲的数据的有序度、逆序度的概念吗?我当时讲到,我们用有序度来表示一组数据的有序程度,用逆序度表示一组数据的无序程度。

假设我们有 n 个数据,我们期望数据从小到大排列,那完全有序的数据的有序度就是 n(n-1)/2,逆序度等于 0;相反,倒序排列的数据的有序度就是 0,逆序度是 n(n-1)/2。除了这两种极端情况外,我们通过计算有序对或者逆序对的个数,来表示数据的有序度或逆序度。

我现在的问题是,如何编程求出一组数据的有序对个数或者逆序对个数呢?因为有序对个数和逆序对个数的求解方式是类似的,所以你可以只思考逆序对个数的求解方法。

最笨的方法是,拿每个数字跟它后面的数字比较,看有几个比它小的。我们把比它小的数字个数记作 k,通过这样的方式,把每个数字都考察一遍之后,然后对每个数字对应的 k 值求和,最后得到的总和就是逆序对个数。不过,这样操作的时间复杂度是 O(n^2)。那有没有更加高效的处理方法呢?

我们用分治算法来试试。我们套用分治的思想来求数组 A 的逆序对个数。我们可以将数组分成前后两半 A1 和 A2,分别计算 A1 和 A2 的逆序对个数 K1 和 K2,然后再计算 A1 与 A2 之间的逆序对个数 K3。那数组 A 的逆序对个数就等于 K1+K2+K3。

我们前面讲过,使用分治算法其中一个要求是,子问题合并的代价不能太大,否则就起不了降低时间复杂度的效果了。那回到这个问题,如何快速计算出两个子问题 A1 与 A2 之间的逆序对个数呢?

这里就要借助归并排序算法了。你可以先试着想想,如何借助归并排序算法来解决呢?

归并排序中有一个非常关键的操作,就是将两个有序的小数组,合并成一个有序的数组。实际上,在这个合并的过程中,我们就可以计算这两个小数组的逆序对个数了。每次合并操作,我们都计算逆序对个数,把这些计算出来的逆序对个数求和,就是这个数组的逆序对个数了。
算法思想:分治算法_第1张图片
尽管我画了张图来解释,但是我个人觉得,对于工程师来说,看代码肯定更好理解一些,所以我们把这个过程翻译成了代码,你可以结合着图和文字描述一起看下。

private int num = 0; // 全局变量或者成员变量

public int count(int[] a, int n) {
  num = 0;
  mergeSortCounting(a, 0, n-1);
  return num;
}

private void mergeSortCounting(int[] a, int p, int r) {
  if (p >= r) return;
  int q = (p+r)/2;
  mergeSortCounting(a, p, q);
  mergeSortCounting(a, q+1, r);
  merge(a, p, q, r);
}

private void merge(int[] a, int p, int q, int r) {
  int i = p, j = q+1, k = 0;
  int[] tmp = new int[r-p+1];
  while (i<=q && j<=r) {
    if (a[i] <= a[j]) {
      tmp[k++] = a[i++];
    } else {
      num += (q-i+1); // 统计 p-q 之间,比 a[j] 大的元素个数
      tmp[k++] = a[j++];
    }
  }
  while (i <= q) { // 处理剩下的
    tmp[k++] = a[i++];
  }
  while (j <= r) { // 处理剩下的
    tmp[k++] = a[j++];
  }
  for (i = 0; i <= r-p; ++i) { // 从 tmp 拷贝回 a
    a[p+i] = tmp[i];
  }
}

你可能感兴趣的:(算法)