ubuntu阿里云服务器配置gpu+jupyter+pytorch

ubuntu16.04阿里云服务器配置gpu+jupyter+pytorch

配置显卡

sudo dpkg -i nvidia-diag-driver-local-repo-ubuntu1604_375.66-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda-drivers
reboot

测试是否安装成功

nvidia-smi

配置cuda9.0

sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64-deb
sudo apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda

测试是否安装成功

sudo dpkg -l | grep -i cuda

给cuda打补丁

sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update_1.0-1_amd64-deb
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-2_1.0-1_amd64-deb
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-3_1.0-1_amd64-deb
sudo dpkg -i cuda-repo-ubuntu1604-9-0-176-local-patch-4_1.0-1_amd64-deb
sudo apt-get update
sudo apt-get upgrade cuda

环境变量配置

# vi /etc/profile
......
export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
# source /etc/profile

测试是否安装成功

nvcc --version

配置cudnn7.0

tar -zxvf cudnn-9.0-linux-x64-v7.tgz
cd cuda    
sudo cp lib64/lib* /usr/local/cuda/lib64/    
sudo cp include/cudnn.h /usr/local/cuda/include/ 
cd /usr/local/cuda/lib64/  
sudo chmod +r libcudnn.so.7.0.5  //自己查看.so的版本 对应更改  
sudo ln -sf libcudnn.so.7.0.5 libcudnn.so.7  
sudo ln -sf libcudnn.so.7 libcudnn.so  
sudo ldconfig 

配置远程jupyter

参考这篇博客进行远程配置

安装pytorch

配置conda源(否则下载过慢)

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes#下载时显示文件来源

conda install pytorch torchvision cudatoolkit=9.0 -c pytorch

测试gpu是否可用

print(torch.cuda.is_available())

你可能感兴趣的:(deep,learning)