- ONNX GraphSurgeon详细介绍
Lntano__y
模型部署算法
ONNXGraphSurgeon(ONNX-GS)是一个用于操作和修改ONNX(OpenNeuralNetworkExchange)模型图的Python库。它允许开发者在ONNX模型的图结构中进行修改、优化、插入节点、删除节点以及其他图结构操作,是在深度学习推理部署过程中非常有用的工具。ONNXGraphSurgeon常用于TensorRT中,用来优化和调整ONNX模型,以便于模型可以高效地在GP
- Jetson系列: tensorrt-python推理yolov5(一)
weixin_55083979
jetson系列YOLOpytorch深度学习
目录一.onnx模型导出二.TensorRT模型本地序列化三.算法整体Pipline架构四.算法整体Pipline实现一.onnx模型导出在使用tensorrt进行加速之前需要将自己的torch模型转为onnx格式的,这个操作很基础就不赘述了,自己根据自己的任务、部署设备选择合适的batch/infersize/opsetyolov5官方导出onnx脚本Example:```pythonfromp
- 【深度学习模型高效部署】tensorRT_Pro深度解读:部署深度学习模型的高效方案
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习深度学习人工智能tensorRT_ProTensorRT高性能推理机器学习模型部署
以下内容将对tensorRT_Pro项目做一个系统的介绍,包括其核心价值、主要功能、应用案例以及关键的示例代码(附详细解释),帮助你快速了解并上手如何基于TensorRT在NVIDIAGPU上实现高性能推理。一、项目概述GitHub-shouxieai/tensorRT_Pro:C++librarybasedontensorrtintegrationtensorRT_Pro是由开发者shouxie
- 【yolov8】模型导出----pytorch导出为onnx模型
栗子风暴
YOLOpytorch人工智能深度学习
【yolov8】模型导出一、为什么要使用yolo的导出模式二、确保安装必要的库:三、yolov8模型导出3.1不同格式配置参数3.2导出格式四、导出模型性能优化4.1使用TensorRT导出模型有什么好处?4.2导出YOLOv8模型时,如何启用INT8量化?4.3为什么输出模型时动态输入尺寸很重要?4.4优化模型性能需要考虑哪些关键的导出参数?五、问题六、疑问训练模型的最终目标是将其部署到实际应用
- C++使用Onnxruntime/TensorRT模型推理
奇华智能
AIc++开发语言人工智能AI计算机视觉
onnxruntime和tensorrt是我们常用的两种推理方式,下面整理了两个推理示例,仅供参考。步骤流程模型训练,python下生成pytorch的模型.pth,并基于.pth模型进行推理python下依据模型推理实现从.pth转向.onnxpython下基于.onnx进行推理,与后续两种推理方式种的推理结果进行比较环境windows10+RTX308015GB显存cuda11.3onnxru
- cap4:YoloV5的TensorRT部署指南(python版)
我是一个对称矩阵
TensorRT全流程部署指南YOLOpython人工智能TensorRT模型部署
《TensorRT全流程部署指南》专栏文章目录:《TensorRT全流程部署指南》专栏主页cap1:TensorRT介绍及CUDA环境安装cap2:1000分类的ResNet的TensorRT部署指南(python版)cap3:自定义数据集训练ResNet的TensorRT部署指南(python版)cap4:YoloV5目标检测任务的TensorRT部署指南(python版)cap5:YoloV5
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
人工智能
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署
MO__YE
pytorch人工智能python
PyTorch.pth转ONNX:从模型训练到跨平台部署在深度学习里,模型的格式决定了它的可用性。如果你是PyTorch用户,你可能熟悉.pth文件,它用于存储训练好的模型。但当你想在不同的环境(如TensorRT、OpenVINO、ONNXRuntime)部署模型时,.pth可能并不适用。这时,ONNX(OpenNeuralNetworkExchange)就必不可少。本文目录:什么是.pth文件
- [C#]C#使用yolov8的目标检测tensorrt模型+bytetrack实现目标追踪
FL1623863129
深度学习c#YOLO目标检测
【测试通过环境】win10x64vs2019cuda11.7+cudnn8.8.0TensorRT-8.6.1.6opencvsharp==4.9.0.NETFramework4.7.2NVIDIAGeForceRTX2070Super版本和上述环境版本不一样的需要重新编译TensorRtExtern.dll,TensorRtExtern源码地址:TensorRT-CSharp-API/src/T
- c++加载TensorRT调用深度学习模型方法
feibaoqq
深度学习深度学习YOLO
使用TensorRT来调用训练好的模型并输出结果是一个高效的推理过程,特别是在需要低延迟和高吞吐量的应用场景中。以下是一个基本的步骤指南,展示了如何在C++中使用TensorRT进行推理。步骤1:准备环境安装TensorRT:确保你已经安装了NVIDIATensorRT库。准备模型:确保你的训练好的模型已经转换为TensorRT支持的格式,通常是一个.engine文件。你可以使用onnx-tens
- tensorrt推理 onxx转engine代码(python),cyclegan网络推理(python、C++)
maobin_1
pythonc++
将onnx文件导出为engine,FP16格式importtensorrtastrtimportpycuda.driverascudaimportpycuda.autoinit#加载ONNX文件onnx_file_path='model.onnx'engine_file_path='model_tesfp16.trt'TRT_LOGGER=trt.Logger(trt.Logger.WARNI
- 模型实战(19)之 从头搭建yolov9环境+tensorrt部署+CUDA前处理 -> 实现目标检测
明月醉窗台
#深度学习实战例程目标检测人工智能计算机视觉图像处理YOLO
从头搭建yolov9环境+tensorrt部署实现目标检测yolov9虚拟环境搭建实现训练、推理与导出导出onnx并转为tensorrt模型Python\C++-trt实现推理,CUDA实现图像前处理文中将给出详细实现源码python、C++效果如下:output_video_11.搭建环境拉下官方代码根据配置下载虚拟环境所需包详细步骤如下:
- pytorch深度学习模型推理和部署、pytorch&ONNX&tensorRT模型转换以及python和C++版本部署
机械心
深度学习pythonpytorch
目录1.采用pytorch进行推理2.采用onnx进行推理2.1pytorch转换为onnx2.2onnx推理3.采用tensorrt进行推理(python环境)3.1onnx转engine文件3.2tensorrt推理4.采用tensorrt进行推理(c++环境)5.采用torch2trt进行推理(python环境)在pytorch框架下,可以很方便进行深度学习模型的搭建、训练和保存。当模型训练
- 【Windows/C++/yolo开发部署03】将实例分割模型ONNX导出为 TensorRT 引擎:完整记录
认识祂
CV计算机视觉Ultralyticsyolo实例分割模型部署
【完整项目下载地址】:【TensorRT部署YOLO项目:实例分割+目标检测】+【C++和python两种方式】+【支持linux和windows】资源-CSDN文库目录写在前面环境准备1.使用trtexec将ONNX模型转换为TensorRT引擎2.验证TensorRT引擎2.1TensorRT版本2.2GPU信息2.3TensorRT引擎信息2.4推理请求2.5推理性能2.6警告信息2.7其他
- TensorRT-LLM保姆级教程(一)-快速入门
大模型部署
人工智能transformer产品经理自然语言处理kubernetes大模型LLM
随着大模型的爆火,投入到生产环境的模型参数量规模也变得越来越大(从数十亿参数到千亿参数规模),从而导致大模型的推理成本急剧增加。因此,市面上也出现了很多的推理框架,用于降低模型推理延迟以及提升模型吞吐量。本系列将针对TensorRT-LLM推理进行讲解。本文为该系列第一篇,将简要概述TensorRT-LLM的基本特性。另外,我撰写的大模型相关的博客及配套代码均整理放置在Github:llm-act
- ONNX推理warning: TensorRT does not natively support INT64. Attempting to cast down to INT32.
paradoxjun
人工智能
只想用ONNX进行模型推理,加载时报Warning,加载模型时间也特别长。加载模型的代码:self.session=onnxruntime.InferenceSession(model_path,providers=onnxruntime.get_available_providers())修改为:self.session=onnxruntime.InferenceSession(model_pa
- 通过TenSorRT转换后的engine引擎文件进行验证的脚本
薇憨
深度学习-硬件篇嵌入式硬件mcupython
YOLOv8算法验证pt文件的精度脚本一般都很常见,工程项目里面一般会有importwarningswarnings.filterwarnings('ignore')fromultralyticsimportYOLOif__name__=='__main__':model=YOLO('/best.pt')#权重文件路径model.val(data='/data.yaml',#yaml文件路径spl
- 【TensorRT】引用了NvInferRuntimeCommon.h仍然报找不到ILogger
TechBoL
人工智能
如果编译遇到error:‘ILogger’innamespace‘nvinfer1’doesnotnameatype或者error:‘nvinfer1::ILogger’hasnotbeendeclared可能需要显式的添加#include"NvInfer.h"即只includeNvInferRuntimeCommon.h是不够的。
- nvdia triton server运行pt文件
滑稽的柴犬
神经网络机器学习python
tritonserver默认都是tensorrt推理。但也会出现有操作不支持,导致无法转模型为engine的情况。可以选择直接运行pytorch的pt文件,以下为操作步骤。1.pytorch后端环境编译步骤原理是使用pytorchC++API运行pt文件模型。安装依赖项apt-getinstallpatchelfrapidjson-devpython3-dev构建NGC的PyTorch容器。例如,
- NVIDIA-TensorRT-Python推理
呆呆珝
推理框架python人工智能开发语言
1,前言NVIDIATensorRT进行模型推理的Python实现。TensorRT是一个高性能的深度学习推理优化器和运行时,它能够为深度学习模型提供低延迟和高吞吐量的推理能力。(由于官方文档的使用还是比较简单,也可能自己很菜,参考了别人的文档和自己摸索,写出来这个可以使用的API)2.Python-API推理step1:导入基本库(环境自行配置)#导入TensorRT库importtensorr
- 导出 YOLOv11 模型的详细步骤和说明
old_power
计算机视觉YOLO人工智能计算机视觉
以下是关于如何导出YOLOv11模型的详细步骤和说明:1.导出YOLOv11模型的基本步骤YOLOv11模型可以通过Ultralytics提供的接口轻松导出为多种格式,如ONNX、TensorRT、CoreML等。以下是导出模型的基本步骤:1.1安装Ultralytics库首先,确保已安装Ultralytics库:pipinstallultralytics1.2加载模型并导出使用Python代码加
- 【CUDA-BEVFusion】tool/build_trt_engine.sh 文件解读
old_power
计算机视觉计算机视觉深度学习
build_trt_engine.sh#configuretheenvironment.tool/environment.shif["$ConfigurationStatus"!="Success"];thenecho"Exitduetoconfigurefailure."exitfi#tensorrtversion#version=`trtexec|grep-m1TensorRT|sed-n"s
- ./yolov8_det: error while loading shared libraries: libnvinfer.so.8: cannot open shared object file:
小鲁嵌入式开发之路
YOLOlinux运维
tensorrt编译的时候报错动态链接库有问题,直接吧把libnvinfer.so.8所在文件夹下的所有文件全部复制到根目录下:/usr/lib/sudocp-rf/home/lzw/TensorRT-8.6.1.6/targets/x86_64-linux-gnu/lib/*/usr/lib/然后重新建立连接sudoln-sf/home/lzw/TensorRT-8.6.1.6/targets/
- ImportError: libnvinfer.so.8: cannot open shared object file: No such file or directory
kyle-fang
模型部署经验分享
安装完TensorRT后,导入报错ImportError:libcudnn.so.8:cannotopensharedobjectfile:Nosuchfileordirectory上面报错信息的意思主要是liblibcudnn.so.8这个文件找不到在网上查资料后知道了这个文件是在cudnn的安装包里的,那需要先安装cudnnNVIDIA官网下载cuDNN8.2.1CUDA11.x安装包并解压到
- 【已解决】ImportError: libnvinfer.so.8: cannot open shared object file: No such file or directory
小小小小祥
python
问题描述:按照tensorrt官方安装文档:https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar安装完成后,使用python测试导入tensorrtimporttensorrt上述代码报错:Traceback(mostrecentcalllast):File“main.py”,li
- Jetson Nano部署TensorRT加速的YOLO V8
Hylan_J
学习项目YOLOgithubarm开发
JetsonNano部署YOLOV8刷JetPack镜像Step1:格式化SD卡Step2:下载镜像文件Step3:烧录镜像文件Python环境配置Solution1:更改默认的Python环境Solution2:使用conda管理Python环境YOLOV8部署Step1:源码下载Step2:trtexec环境变量设置Step3:pt权重文件导出为ONNX格式Step4:ONNX文件生成engi
- TensorRT模型量化实践
痛&快乐着
深度学习TensorRTc++深度学习
文章目录量化基本概念量化的方法方式1:trtexec(PTQ的一种)方式2:PTQ2.1pythononnx转trt2.2polygraphy工具:应该是对2.1量化过程的封装方式3:QAT(追求精度时推荐)使用TensorRT量化实践(C++版)使用TensorRT量化(python版)参考文献量化基本概念后训练量化PostTrainingQuantization(PTQ)量化过程仅仅通过离线推
- 使用TensorRT对YOLOv8模型进行加速推理
fengbingchun
DeepLearningCUDA/TensorRTYOLOv8TensorRT
这里使用GitHub上shouxieai的infer框架对YOLOv8模型进行加速推理,操作过程如下所示:1.配置环境,依赖项,包括:(1).CUDA:11.8(2).cuDNN:8.7.0(3).TensorRT:8.5.3.1(4).ONNX:1.16.0(5).OpenCV:4.10.02.cloneinfer代码:https://github.com/shouxieai/infer3.使用
- ONNX Runtime、CUDA、cuDNN、TensorRT版本对应
可keke
ML&DLpytorchdeeplearning
文章目录ONNXRuntime的安装ONNXRuntime与CUDA、cuDNN的版本对应ONNXRuntime与ONNX的版本对应ONNXRuntime、TensorRT、CUDA版本对应ONNXRuntime的安装官方文档注意,到目前为止,onnxruntime-gpu在CUDA12.x和CUDA11.x下的安装命令是不同的,仔细阅读官方文档。验证安装python>>>importonnxru
- python 安装 win32com
郎君啊
python开发语言
扩展,Python,安装相关视频讲解:StableDiffusion提升出图速度,TensorRT扩展,SDXL-SSD-1B-A1111,速度提升60%,PyTorch更新python的or运算赋值用法用python编程Excel有没有用处?如何在Windows系统上安装win32com一、整体流程步骤操作1下载并安装Python2安装pywin32扩展包3验证安装是否成功二、具体操作步骤及代码
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出