Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2678 Accepted Submission(s): 524
Special Judge
Problem Description
The center coordinate of the circle C is O, the coordinate of O is (0,0) , and the radius is r.
P and Q are two points not outside the circle, and PO = QO.
You need to find a point D on the circle, which makes PD+QD minimum.
Output minimum distance sum.
Input
The first line of the input gives the number of test cases T; T test cases follow.
Each case begins with one line with r : the radius of the circle C.
Next two line each line contains two integers x , y denotes the coordinate of P and Q.
Limits
T≤500000
−100≤x,y≤100
1≤r≤100
Output
For each case output one line denotes the answer.
The answer will be checked correct if its absolute or relative error doesn’t exceed 10−6.
Formally, let your answer be a, and the jury’s answer be b. Your answer is considered correct if |a−b|max(1,b)≤10−6.
Sample Input
4
4
4 0
0 4
4
0 3
3 0
4
0 2
2 0
4
0 1
1 0
Sample Output
5.6568543
5.6568543
5.8945030
6.7359174
Source
2017 Multi-University Training Contest - Team 6
题目大意:给出圆的半径r和圆内等距两点P、Q,在圆上找一点D,问P、Q到D的距离之和最小是多少?
解题思路:作P、Q的反演点,即 OP∗OP′=r2,OQ∗OQ′=r2 ,根据 P′Q′ 与圆是否相交来判断D的位置,若相交则结果为 P′Q′ 乘上比例 OP/r ,若不相交,则先求出 P′Q′ 的中点 D′ ,在根据比例确定 D 的位置,计算 PD+QD 即可。
#include
#include
#include
using namespace std;
const double eps=1e-8;
struct node
{
double x,y;
}p[10];
int dcmp(double x)
{
if(fabs(x)<=eps) return 0;
return x<0?-1:1;
}
double calc(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
int T;
scanf("%d",&T );
while (T--) {
double r;
scanf("%lf",&r );
scanf("%lf%lf",&p[1].x,&p[1].y );
scanf("%lf%lf", &p[2].x,&p[2].y);
double op=calc(p[1].x,p[1].y,0,0);
if(dcmp(op)==0)
{printf("%.7f\n",2*r );continue;}
double k=r*r/op/op;
p[3].x=p[1].x*k;p[3].y=p[1].y*k;
p[4].x=p[2].x*k;p[4].y=p[2].y*k;
p[5].x=(p[3].x+p[4].x)/2;
p[5].y=(p[3].y+p[4].y)/2;
double od=calc(p[5].x,p[5].y,0,0);
if(od<=r)
{
printf("%.7f\n",calc(p[3].x,p[3].y,p[4].x,p[4].y)*op/r );
}else
{
p[6].x=p[5].x*r/od;p[6].y=p[5].y*r/od;
printf("%.7f\n",2*calc(p[6].x,p[6].y,p[1].x,p[1].y));
}
}
return 0;
}