Spark学习02——创建DStream的方法

Spark Streaming提供两类内置流媒体源。

基本来源:StreamingContext API中直接提供的源。示例:文件系统和套接字连接。
高级资源:Kafka,Flume,Kinesis等资源可通过额外的实用程序类获得。

基本来源如下,高级来源可参考官网例子:

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/streaming/DirectKafkaWordCount.scala

方法一、通过套接字socket创建

object GenerateChar {
  def generateContext(index : Int) : String = {
    import scala.collection.mutable.ListBuffer
    val charList = ListBuffer[Char]()
    for(i <- 65 to 90)
      charList += i.toChar
    val charArray = charList.toArray
    charArray(index).toString
  }
  def index = {
    import  java.util.Random
    val rdm = new Random
    rdm.nextInt(7) 
  }
  def main(args: Array[String]) {
    val listener = new ServerSocket(9998)
    while(true){
      val socket = listener.accept()
      new Thread(){
        override def run() = {
          println("Got client connected from :"+ socket.getInetAddress)
          val out = new PrintWriter(socket.getOutputStream,true)
          while(true){
            Thread.sleep(500)
            val context = generateContext(index)  //产生的字符是字母表的前七个随机字母
            println(context)
            out.write(context + '\n')
            out.flush()
          }
          socket.close()
        }
      }.start()
    }
  }
}
object ScoketStreaming {
  def main(args: Array[String]) {
    //创建一个本地的StreamingContext,含2个工作线程
    val conf = new SparkConf().setMaster("local[2]").setAppName("ScoketStreaming")
    val sc = new StreamingContext(conf,Seconds(10))   //每隔10秒统计一次字符总数
    //创建珍一个DStream,连接master:9998
    val lines = sc.socketTextStream("master",9998)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x , 1)).reduceByKey(_ + _)
    wordCounts.print()
    sc.start()         //开始计算
    sc.awaitTermination()   //通过手动终止计算,否则一直运行下去
  }
}

方法二、文件流

Spark Streaming通过监控文件系统的变化,若有新文件添加,则将它读入并作为数据流
需要注意的是:
1.这些文件具有相同的格式
2.这些文件通过原子移动或重命名文件的方式在dataDirectory创建
3.一旦移动这些文件,就不能再进行修改,如果在文件中追加内容,这些追加的新数据也不会被读取。

object FileStreaming {
  def main(args: Array[String]) {
    val conf = new SparkConf().setMaster("local").setAppName("FileStreaming")
    val sc = new StreamingContext(conf,Seconds(5))
    val lines = sc.textFileStream("/home/hadoop/wordCount")
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x , 1)).reduceByKey(_ + _)
    sc.start()
    sc.awaitTermination()
  }
}

方法三、RDD队列流

使用streamingContext.queueStream(queueOfRDD)创建基于RDD队列的DStream,用于调试Spark Streaming应用程序。
QueueStream:程序每隔1秒就创建一个RDD,Streaming每隔1秒就就对数据进行处理

object QueueStream {
  def main(args: Array[String]) {
    val conf = new SparkConf().setMaster("local[2]").setAppName("queueStream")
    //每1秒对数据进行处理
    val ssc = new StreamingContext(conf,Seconds(1))
    //创建一个能够push到QueueInputDStream的RDDs队列
    val rddQueue = new mutable.SynchronizedQueue[RDD[Int]]()
    //基于一个RDD队列创建一个输入源
    val inputStream = ssc.queueStream(rddQueue)
    val mappedStream = inputStream.map(x => (x % 10,1))
    val reduceStream = mappedStream.reduceByKey(_ + _)
    reduceStream.print
    ssc.start()
    for(i <- 1 to 30){
      rddQueue += ssc.sparkContext.makeRDD(1 to 100, 2)   //创建RDD,并分配两个核数
      Thread.sleep(1000)                                  
    }
    ssc.stop()
  }
}

你可能感兴趣的:(Spark)