- 目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究(续)
林聪木
目标检测YOLO深度学习
目录基于双蓝图卷积的轻量化自动驾驶目标检测算法5.1引言5.2DarkNet53网络冗余性分析5.3双蓝图卷积网络5.4实验结果及分析基于深度学习的自动驾驶目标检测算法研究与应用传统的目标检测算法目标检测基线算法性能对比与选择相关理论和算法基础2.1引言2.2人工神经网络2.3FCOS目标检测算法2.4复杂交通场景下的目标检测难点与FCOS改进方案基于FCOS的目标检测算法改进3.1引言3.2Re
- 纹理贴图算法研究论文综述
点云SLAM
算法图形图像处理算法纹理贴图计算机图形学计算机视觉人工智能虚拟现实(VR)纹理贴图算法综述
纹理贴图(TextureMapping)是计算机图形学和计算机视觉中的核心技术,广泛应用于三维重建、游戏渲染、虚拟现实(VR)、增强现实(AR)等领域。对其算法的研究涵盖了纹理生成、映射、缝合、优化等多个方面。1.引言纹理贴图是指将二维图像纹理映射到三维几何表面上,以增强模型的视觉真实感。传统方法主要关注静态几何模型上的纹理生成与映射,而近年来,随着多视角图像重建、RGB-D扫描、神经渲染的发展,
- 机器人工程专业毕设选题推荐
文章目录1前言2如何选题3选题方向2.1嵌入式开发方向2.2物联网方向2.3移动通信方向2.4人工智能方向2.5算法研究方向2.6移动应用开发方向2.7网络通信方向3.4学长作品展示4最后1前言近期不少学弟学妹询问学长关于电子信息工程专业相关的毕设选题,学长特意写下这篇文章以作回应!以下是学长亲手整理的物联网相关的毕业设计选题,都是经过学长精心审核的题目,适合作为毕设,难度不高,工作量达标,对毕设
- FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
herosunly
大模型精度BF16硬件适配
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大
- 搜索领域知识图谱的知识推理算法研究
搜索引擎技术
知识图谱算法人工智能ai
搜索领域知识图谱的知识推理算法研究关键词:知识图谱、知识推理、搜索算法、图神经网络、路径推理、规则推理、表示学习摘要:本文深入探讨搜索领域中知识图谱的知识推理算法。我们将从知识图谱的基本概念出发,分析不同类型的知识推理算法原理,包括基于规则的推理、基于表示的推理和基于路径的推理。通过实际案例和代码实现,展示这些算法如何提升搜索效果,最后讨论该领域的未来发展趋势和挑战。背景介绍目的和范围本文旨在系统
- 点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取
格图素书
人工智能
目录知识储备点云滤波算法及单木信息提取点云条件滤波单木信息提取1.点云预处理2.点云密度计算3.密度阈值筛选4.骨架提取5.骨架细化优化方向前言国内外研究现状激光雷达研究现状点云数据的滤波算法研究现状单木分割应用现状LiDAR工作原理与点云数据的组成2.1LiDAR系统的内部结构2.1.1激光测距单元2.1.2光学机械扫描单元2.1.3惯性导航系统INS2.1.4动态差分GPS2.2定位原理2.3
- 室内定位论文集-20241011期
程序员石磊
室内定位论文集基于深度学习的室内定位室内定位
QLOC:基于量子指纹的大规模定位实用算法研究问题当前的定位技术在处理涉及大量设备的大型部署时往往存在不准确和低效的问题。方法该研究引入了一种新颖的量子指纹基算法,称为QLOC,旨在为广泛的室内环境提供精确的定位服务,并尽量减少计算需求。创新点设计了一种高效的量子算法,在设备数量增加的情况下能很好地扩展。通过严格测试与真实世界场景和基准对比验证了所提方案的有效性。结论QLOC代表了一个重要的进展,
- 北斗导航 | 基于改进小龙虾优化算法的GPS接收机自主完好性监测算法研究
北斗猿
卫星导航算法matlab
详细介绍基于改进小龙虾优化算法(COA)的GPS接收机自主完好性监测算法的原理、公式和MATLAB实现。主要内容如下:RAIM基础原理与问题定义:介绍最小二乘残差法的数学模型,包括伪距观测方程、故障检测统计量和故障识别方法。改进小龙虾优化算法设计:详细说明COA的三种行为模式及其数学表述,以及三种改进策略(非线性温度更新、自适应视野调整、混合变异机制)。融合改进COA的RAIM算法:阐述种群初始化
- python深度学习毕业设计项目选题汇总
kooerr
毕业设计python毕设
文章目录1前言1.1选题注意事项1.1.1难度怎么把控?1.1.2题目名称怎么取?1.2开题选题推荐1.2.1起因1.2.2核心-如何避坑(重中之重)1.2.3怎么办呢?2选题概览3项目概览题目1:图像隐写算法研究与实现题目2:Django股价预测可视化系统题目3:大数据招聘数据可视化系统题目4:深度学习车道线检测题目5:深度学习交通车流量计数系统题目6:深度学习遮挡下的人脸识别题目7:深度学习照
- 探索算法秘境:量子随机游走算法及其在图论问题中的创新应用
目录编辑一、量子随机游走算法的起源与原理二、量子随机游走算法在图论问题中的创新应用三、量子随机游走算法的优势与挑战四、结语在算法研究的浩瀚星空中,总有一些领域如同遥远星系,闪烁着神秘而诱人的光芒。今天,我们将一同深入这片算法秘境,探索一个相对偏僻但极具潜力的算法——量子随机游走算法(QuantumRandomWalk,QRW),并揭示它在图论问题中的创新应用。一、量子随机游走算法的起源与原理量子随
- AI人工智能在自动驾驶的路径规划算法研究
AI大模型应用工坊
AI大模型开发实战人工智能自动驾驶算法ai
AI人工智能在自动驾驶的路径规划算法研究关键词:AI人工智能、自动驾驶、路径规划算法、环境感知、智能决策摘要:本文聚焦于AI人工智能在自动驾驶路径规划算法方面的研究。首先介绍了研究的背景和意义,阐述了自动驾驶路径规划的基本概念和重要性。接着详细探讨了核心概念,包括路径规划的原理、架构以及与其他自动驾驶模块的联系,并通过Mermaid流程图进行直观展示。对多种核心路径规划算法的原理进行了深入剖析,使
- 李晓梅老师在并行算法领域太厉害了,为什么没有评院士?
好好学习啊天天向上
算法
李晓梅老师是我国数值并行算法研究的开拓者之一。她主持了银河-I、银河-II巨型计算机应用软件的研制与开发,首次在我国建立了“并行线性代数库”、“并行特征值特征向量库”、“并行快速变换库”,研制了我国第一个“中期数值天气预报多任务并行软件系统”,在我国首次建立起向量地震数据处理软件系统等。她为银河-I/银河-II超级计算机研制和数值天气预报、核模拟、石油勘探等领域的向量化应用软件研制,及我国并行计算
- 文生图模型的dev、fast、full版本的区别
Liudef06小白
AI作画
在文生图模型领域,StableDiffusion的dev、fast、full版本分别对应不同的技术定位和应用场景,其核心区别体现在功能全面性、运行效率及硬件适配性上。以下是具体对比分析:1.Dev版本(开发者版)核心定位:面向算法研究者与深度定制开发者,强调灵活性与可扩展性。技术特性:开源架构:提供完整的模型代码库(如基于PyTorch的实现),允许用户修改网络结构、调整超参数(如学习率、扩散步数
- 经典算法研究(1):SIFT算法1
乔qiao
图像处理
作者:qxl邮箱:
[email protected]系列文章链接一、经典算法研究(1):SIFT算法1二、经典算法研究(1):SIFT算法2三、文章目录系列文章链接前言一、Sift算法原理介绍1.0基础概念高斯金字塔八度为什么要构建高斯金字塔?高斯金字塔构建步骤如何描述尺度空间?构建差分高斯金字塔尺度空间的连续性下一个八度的第一幅图像如何确定前言学习sift算法记录一、Sift算法原理介绍尺度不变
- 深度强化学习实战:玩转 Atari 游戏
谷雪_658
游戏python开发语言
在人工智能技术蓬勃发展的当下,深度强化学习凭借其在复杂决策场景中的出色表现,成为众多研究人员和开发者关注的焦点。Atari游戏系列以其丰富的游戏环境和多样化的任务设定,成为深度强化学习算法研究与实践的经典测试平台。通过在Atari游戏中应用深度强化学习算法,不仅能够深入理解强化学习的核心原理,还能探索其在实际场景中的应用潜力。本文将带领读者从零开始,通过实战操作,掌握使用深度强化学习算法玩转Ata
- 乾元通渠道商中标西藏2024年应急装备采购配置项目
爱研究的小梁
智能路由器信息与通信
近日,乾元通渠道商中标西藏2024年应急装备采购配置项目(应急通信车替换升级设备及多链路聚合设备),乾元通作为设备厂家,为项目提供通信指挥类装备(多链路聚合设备)QYT-X1。青岛乾元通数码科技有限公司作为国家应急产业企业,深耕于数据调度算法研究,参与了多项国家及省部级应急救灾通讯保障项目,致力于解决在地震灾害、塌方事故等自然灾害现场,快速组建可靠网络需求。设备采用多链路聚合技术,具有4G/5G、
- 科研学习 论文解读——面向电商内容安全风险管控的协同过滤推荐算法研究(1)
2401_84296945
学习安全推荐算法
面向电商内容安全风险管控的协同过滤推荐算法研究-中国知网(cnki.net)")面向电商内容安全风险管控的协同过滤推荐算法研究*摘要:**[目的/意义]随着电商平台商家入驻要求降低以及商品上线审核流程简化,内容安全风险问题成为协同过滤推荐算法伦理审查的核心问题之一。[方法/过程]本文将内容安全风险问题纳入用户协同过滤推荐算法的优化过程,提出一种改进的推荐算法。首先,采用混合研究方法对内容安全风险商
- AIGC提示(prompt)飞升方法:走向专家之路
herosunly
大模型AIGCprompt专家之路
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了AIGC提示(prompt)飞升方法:走向专家之路,希望对学习大语言模型
- 最新电子科学与技术专业毕设选题题目推荐
Mdc_stdio
单片机
文章目录1前言2如何选题3选题方向2.1嵌入式开发方向2.2物联网方向2.3移动通信方向2.4人工智能方向2.5算法研究方向2.6移动应用开发方向2.7网络通信方向3.4学长作品展示4最后1前言近期不少学弟学妹询问学长关于电子信息工程专业相关的毕设选题,学长特意写下这篇文章以作回应!以下是学长亲手整理的物联网相关的毕业设计选题,都是经过学长精心审核的题目,适合作为毕设,难度不高,工作量达标,对毕设
- 目标检测YOLO实战应用案例100讲-基于改进YOLO v7的智能振动分拣系统开发
林聪木
目标检测YOLO目标跟踪
目录前言课题国内外研究现状物料分拣研究现状目标检测算法研究现状振动视觉分拣系统的总体设计2.1振动盘视觉分拣系统的总体设计方案2.2振动盘视觉分拣系统的硬件选型2.2.1振动盘的选型2.2.2相机系统2.2.3运动控制器选型2.3振动盘视觉分拣系统的软件方案设计2.3.1振动盘视觉分拣系统软件开发需求分析2.3.2振动盘视觉分拣系统软件环境基于YOLOv7的模型改进3.1YOLOv7算法原理和网络
- 基于 Q-learning 的城市场景无人机三维路径规划算法研究,可以自定义地图,提供完整MATLAB代码
IT猿手
Qlearning无人机路径规划MATLAB无人机算法matlab无人机路径规划强化学习深度学习qlearning
一、引言随着无人机技术的不断发展,其在城市环境中的应用越来越广泛,如物流配送、航拍测绘、交通监控等。然而,城市场景具有复杂的建筑布局、密集的障碍物以及多变的飞行环境,给无人机的路径规划带来了巨大的挑战。传统的路径规划算法在三维复杂空间中往往难以满足实时性和最优性的要求。因此,研究一种有效的无人机三维路径规划算法具有重要的现实意义。Q-learning算法作为一种强化学习方法,能够通过与环境的交互学
- 基于Transformer的算力供需动态平衡算法研究与实践
九章云极AladdinEdu
transformer算法深度学习人工智能gpu算力架构智能电视
引言:算力供需失衡的困境与机遇随着大模型、AIGC等技术的爆发式发展,全球AI算力需求呈现指数级增长。OpenAI数据显示,2012至2020年间,训练AI模型所需的算力增长了30万倍,而传统算力调度系统仍停留在静态分配阶段。本文提出一种基于Transformer架构的算力需求预测模型,通过动态感知-预测-调度机制,实现算力资源的智能化供需平衡,为构建新一代AI算力基础设施提供新思路。一、现有方法
- 【创新未发表】Matlab实现飞蛾扑火优化算法MFO-Kmean-Transformer-LSTM组合状态识别算法研究
天天Matlab代码科研顾问
matlab算法transformer
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍一、引言随着工业自动化和智能制造的飞速发展,对工业设备状态监测与故障诊断的需求日益迫切。传统的监测方法往往依赖于人工经验,效率低下且难以应对复杂多变的工业环境。近年来,基于数
- 下载URL包含Signature和OSSAccessKeyId的实战代码
herosunly
Python爬虫实战教程爬虫python下载文件signature实战代码
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 今天给大家带来的文章是:下载URL包含Signature和OSSAccessKeyId
- 基于机器学习的舆情分析算法研究
赵谨言
论文经验分享毕业设计
标题:基于机器学习的舆情分析算法研究内容:1.摘要随着互联网的飞速发展,舆情信息呈现爆炸式增长,如何快速准确地分析舆情成为重要课题。本文旨在研究基于机器学习的舆情分析算法,以提高舆情分析的效率和准确性。方法上,收集了近10万条社交媒体的舆情文本数据,利用多种机器学习算法如支持向量机、朴素贝叶斯、决策树等进行训练和优化。结果表明,经过优化的支持向量机算法在舆情分类的准确率上达到了85%以上,明显高于
- 基于深度学习的人脸属性识别算法研究
赵谨言
论文经验分享毕业设计
标题:基于深度学习的人脸属性识别算法研究内容:1.摘要随着人工智能技术的快速发展,人脸属性识别在安防监控、人机交互等领域具有重要的应用价值。本文旨在研究基于深度学习的人脸属性识别算法,以提高识别的准确性和效率。通过构建深度卷积神经网络模型,使用大规模的人脸数据集进行训练和优化。实验结果表明,所提出的算法在多个公开人脸属性数据集上取得了较好的识别效果,平均识别准确率达到了85%以上。研究表明,基于深
- 目标检测YOLO实战应用案例100讲- 无人机平台下露天目标检测与计数
林聪木
目标检测YOLO无人机
目录知识储备基于YOLOv8改进的无人机露天目标检测与计数一、环境配置与依赖安装二、核心代码实现(带详细注释)1.改进YOLOv8模型定义(添加注意力机制)2.无人机视角数据增强(drone_augment.py)3.多目标跟踪与计数(tracking_counter.py)4.完整推理流程(main.py)三、关键技术优化点四、数据集配置示例前言目标检测算法研究现状分析基于检测方法的目标计数研究
- 数据挖掘实验:k_means、k_medoids聚类算法的实现(Python)
一只西绿柿
课程实验数据挖掘聚类算法python
目录前言一、k-means算法二、k-medoids算法三、实验结果展示总结前言本文是基于划分的聚类算法研究与实现,实现了k均值及k中心点聚类算法,并在数据集上完成测试。用户输入k的值,可对数据集中的数据进行聚类。一、k-means算法k-means算法使用簇的均值点作为簇的形心。首先在数据集中随机选择k个点作为k个簇的初始均值,对于数据集中的每个点,根据欧式距离将其分配至距离最近的簇。然后k均值
- 【影响因子高】【数据驱动】自组织方向感知数据分区算法研究(Matlab代码实现)
然哥依旧
算法matlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码、数据、文章⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时
- 乾元通渠道商中标大理市自然灾害应急能力提升项目
爱研究的小梁
信息与通信智能路由器
近日,乾元通渠道商中标云南省大理市自然灾害应急能力提升项目,乾元通作为设备厂家,为项目提供通信指挥类装备(多链路聚合设备)QYT-X1。青岛乾元通数码科技有限公司作为国家应急产业企业,深耕于数据调度算法研究,参与了多项国家及省部级应急救灾通讯保障项目,致力于解决在地震灾害、塌方事故等自然灾害现场,快速组建可靠网络需求。设备采用多链路聚合技术,具有4G/5G、专网、卫星网、宽带自组网、WiFi等多种
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多