- k均值聚类算法考试例题_k均值算法(k均值聚类算法计算题)
寻找你83497
k均值聚类算法考试例题
?算法:第一步:选K个初始聚类中心,z1(1),z2(1),…,zK(1),其中括号内的序号为寻找聚类中心的迭代运算的次序号。聚类中心的向量值可任意设定,例如可选开始的K个.k均值聚类:---------一种硬聚类算法,隶属度只有两个取值0或1,提出的基本根据是“类内误差平方和最小化”准则;模糊的c均值聚类算法:--------一种模糊聚类算法,是.K均值聚类算法是先随机选取K个对象作为初始的聚类
- 机器学习-聚类算法
不良人龍木木
机器学习机器学习算法聚类
机器学习-聚类算法1.AHC2.K-means3.SC4.MCL仅个人笔记,感谢点赞关注!1.AHC2.K-means3.SC传统谱聚类:个人对谱聚类算法的理解以及改进4.MCL目前仅专注于NLP的技术学习和分享感谢大家的关注与支持!
- K-means 算法的介绍与应用
小魏冬琅
matlab算法kmeans机器学习
目录引言K-means算法的基本原理表格总结:K-means算法的主要步骤K-means算法的MATLAB实现优化方法与改进K-means算法的应用领域表格总结:K-means算法的主要应用领域结论引言K-means算法是一种经典的基于距离的聚类算法,在数据挖掘、模式识别、图像处理等多个领域中得到了广泛应用。其核心思想是将相似的数据对象聚类到同一个簇中,而使得簇内对象的相似度最大、簇间的相似度最小
- 聚类分析 | Python密度聚类(DBSCAN)
天天酷科研
聚类分析算法(CLA)python聚类机器学习DBSCAN
密度聚类是一种无需预先指定聚类数量的聚类方法,它依赖于数据点之间的密度关系来自动识别聚类结构。本文中,演示如何使用密度聚类算法,具体是DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)来对一个实际的数据集进行聚类分析。一、基本介绍密度聚类的核心思想是将数据点分为高密度区域和低密度区域。高密度区域内的数据点被认为属于同一簇,而低
- pandas/numpy数据结构算法(之行列变换)(二) (tag:行列转换,迪卡尔积,内置函数,数据结构)
MrStubborn_aebe
目录:****1.Numpy-diag矩阵变换stack()/unstack()pd.pivot_table()pd.melt()groupby聚类算法mapping小技巧numpy.vectorize()**在这**里插入图片描述前言最近遇到很多需要迭代和归并数据的情况,一直以来的做法,都是循环主要的键,去进行后续操作。这是最典型的Python操作,然而还是上次提到的效率问题。记得之前朋友和我讲
- 机器学习之 K-均值聚类算法
维生素¥
机器学习机器学习算法均值算法
K-均值(K-means)聚类算法是一种常用的无监督学习算法,用于将数据集划分为K个不同的簇。该算法通过迭代的方式将数据点分配到最近的簇中,并更新簇的中心,直到收敛为止。一、K-均值聚类算法的基本步骤:初始化K个簇的中心点(可以随机选择或者根据数据集初始化)。将每个数据点分配到最近的簇中。更新每个簇的中心点为该簇所有数据点的平均值。重复步骤2和3,直到簇的中心点不再改变或达到指定的迭代次数。二、K
- 机器学习中的 K-均值聚类算法及其优缺点
安科瑞蒋静
机器学习算法均值算法
K-均值聚类算法是一种常用的无监督学习算法,用于将一组数据点划分为K个不同的聚类。该算法的主要思想是将数据点分配给最接近的聚类中心,并通过迭代优化聚类中心位置,使得聚类内部的数据点之间的距离最小化。算法流程如下:初始化K个聚类中心,可以是随机选择的数据点或者通过其他方法选择。分别计算每个数据点到K个聚类中心的距离,并将其分配给距离最近的聚类中心。更新每个聚类的中心位置为其内部所有数据点的平均值。重
- 【车辆轨迹处理】python实现轨迹点的聚类(一)——DBSCAN算法
空之箱大战春日影
车辆轨迹数据处理算法python聚类
文章目录前言一、单辆车轨迹的聚类与分析1.引入库2.聚类3.聚类评价二、整个数据集多辆车聚类1.聚类2.整体评价前言 空间聚类是基于一定的相似性度量对空间大数据集进行分组的过程。空间聚类分析是一种无监督形式的机器学习。通过空间聚类可以从空间数据集中发现隐含的信息。 作者在科研工作中,需要对某些车辆的轨迹数据进行一些空间聚类分析,以期望发现车辆在行驶过程中发生轨迹点”聚集“的行为。当等时间间隔的
- 数学建模统计题中常用的聚类分类
皆过客,揽星河
数学建模大赛数学建模算法k-means数据处理Pythonnumpy
聚类分类K均值聚类(K-MeansClustering)是一种广泛使用的聚类算法,旨在将数据点分成K个簇,使得簇内的数据点尽可能相似,而簇间的数据点差异尽可能大。以下是对K均值聚类的详细介绍:算法原理K均值聚类算法通过迭代的方式优化簇的划分,步骤如下:1.初始化:选择K个初始簇中心(也称为质心)。这些初始簇中心可以通过随机选择K个数据点,或使用更高级的方法(如K均值++初始化)来确定。2.分配阶段
- Spark入门:KMeans聚类算法
17111_Chaochao1984a
算法sparkkmeans
聚类(Clustering)是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(UnsupervisedLearning)方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
- Spark MLlib模型训练—聚类算法 K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法K-meansK-means是一种经典的聚类算法,广泛应用于数据挖掘、图像处理、推荐系统等领域。它通过将数据划分为(k)个簇(clusters),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点差异尽可能大。ApacheSpark提供了K-means聚类算法的高效实现,支持大规模数据的分布式计算。本文将详细介绍K-means聚类算法的原理,并结合Spark
- Spark MLlib模型训练—聚类算法 Bisecting K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法BisectingK-means由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态。二分KMeans(BisectingKMeans)算法的主要思想是:首先将所有点作为一个簇
- 自然语言处理系列五十四》文本聚类算法》K-means文本聚类算法原理
陈敬雷-充电了么-CEO兼CTO
算法大数据人工智能自然语言处理nlpai人工智能kmeansAIGC聚类
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类算法代码实战总结自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类是K-means算法的一个常用应用场景,下面介绍
- 自然语言处理系列五十五》文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理
陈敬雷-充电了么-CEO兼CTO
人工智能大数据算法算法自然语言处理聚类AIGCaigcchatgpt大数据
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十五文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理LDA主题词-潜在狄利克雷分布模型代码实战总结自然语言处理系列五十五文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理LDA是潜在狄利克雷分布模型的简称,也
- 机器学习:DBSCAN算法(内有精彩动图)
吃什么芹菜卷
机器学习机器学习算法人工智能
目录前言一、DBSCAN算法1.动图展示(图片转载自网络)2.步骤详解3.参数配置二、代码实现1.完整代码2.代码详解1.导入数据2.通过循环确定参数最佳值总结前言DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法。它可以发现任意形状的簇并能够处理噪声数据。一、DBSCAN算法1.动图展示(图片转载自网
- 模糊C-means算法原理及Python实践
doublexiao79
数据分析与挖掘算法python
模糊C-means算法原理及Python实践一、目标函数二、隶属度矩阵和聚类中心三、算法步骤四、终止条件五、算法特点六、Python实现模糊C-means(FuzzyC-Means,简称FCM)算法是一种经典的模糊聚类算法,它在数据分析、数据挖掘、图像处理等多个领域有着广泛的应用。FCM算法通过为每个数据点分配模糊隶属度,将数据点划分到不同的聚类中心,从而实现对数据集的聚类分析。以下是模糊C-me
- 【闲谈】聚类算法的金融数据挖掘应用及实践
爱写代码的July
其他金融大数据数据分析数据可视化python
目录一数据挖掘技术在金融领域应用概述二聚类算法介绍三聚类算法在金融数据挖掘中的应用1.聚类算法在客户细分领域的应用2.聚类算法在客户信用评估领域的应用四算法实践与个人体会1.聚类算法的实践——以k-means算法为例的银行客户数据集分析2.个人实际应用体会五总结与展望参考文献一数据挖掘技术在金融领域应用概述随着金融行业的不断发展,金融领域数字化转型程度愈发加深,计算机科学在金融领域的应用显得更为重
- 程序猿成长之路之数据挖掘篇——Kmeans聚类算法
zygswo
数据挖掘数据挖掘算法kmeans
Kmeans是一种可以将一个数据集按照距离(相似度)划分成不同类别的算法,它无需借助外部标记,因此也是一种无监督学习算法。什么是聚类用官方的话说聚类就是将物理或抽象对象的集合分成由类似的对象组成的多个类的过程。用自己的话说聚类是根据不同样本数据间的相似度进行种类划分的算法。这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布。什么是K-means聚类用官方的
- 学习笔记1 三大聚类方法:K-means聚类、层次聚类、DBSCAN聚类
泠泠风来
聚类matlab
学习笔记1:三大聚类方法:K-means聚类、层次聚类、DBSCAN聚类文章目录前言一、K-means聚类操作过程二、层次聚类操作过程三、DBSCAN聚类操作过程总结前言在样本数量较多的情况下,可以通过聚类将样本划分为多个类,对每个类中单独使用模型进行分析和相关运算,亦可以探究不同类之间的相关性和主要差异。例如MathorCup2022年D题此外,可以借助https://www.naftaliha
- K-means聚类算法:从原理到实践的全面解读
一休哥助手
人工智能算法kmeans聚类
引言在当今数据驱动的时代,机器学习技术的发展已经成为各行各业的重要驱动力。在机器学习中,聚类算法是一类被广泛应用的技术之一。聚类旨在将数据集中的样本划分为不同的组,使得组内的样本相似度高,组间的相似度低。K-means聚类算法作为聚类算法中的一种经典方法,因其简单、高效的特性被广泛应用于各个领域。在本文中,我们将深入探讨K-means聚类算法,从基本原理到实际应用,以及算法的优化和实现方法。首先,
- 聚类算法-Kmeans聚类
红米煮粥
机器学习kmeans聚类
一、K-means聚类介绍1.含义K-means聚类是一种非常流行的无监督学习算法,用于将数据点划分为预定义的K个簇(或组),其中每个簇由其质心(即簇中所有点的均值)定义。K-means算法的目标是使簇内的点尽可能紧密地聚集在一起,同时使不同簇之间的点尽可能远离。2.基本步骤:选择K值:首先,你需要决定将数据分成多少个簇,即K的值。K的选择通常是基于问题的上下文或通过一些启发式方法(如肘部法则)来
- 每天一个数据分析题(五百零二)- 分割式聚类算法
跟着紫枫学姐学CDA
数据分析题库算法数据分析聚类
以下哪个选项是分割式聚类算法?A.K-Means。B.CentroidMethodC.Ward’sMethodD.以上皆非数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- 论机器学习中的 K-均值聚类算法及其优缺点
风跟我说过她
机器学习机器学习算法均值算法聚类
K-均值聚类算法是一种常见的机器学习算法,用于将数据集分为预先指定数量的簇。下面是对K-均值聚类算法以及其优缺点的讲解:算法步骤:a.随机选择K个中心点作为初始聚类中心。b.将数据集中的每个样本分配到最近的中心点(即最近的簇)。c.计算每个簇的新中心点,即计算簇内样本的平均值。d.重复步骤b和c,直到聚类中心不再发生变化或达到最大迭代次数。优点:a.实现简单,易于理解和实现。b.对大型数据集也能够
- 机器学习中的 K-均值聚类算法及其优缺点
weixin_63207763
机器学习算法均值算法
K-均值聚类算法是一种无监督学习算法,用于将数据集中的样本分为K个不同的类别。该算法的基本思想是通过不断迭代地更新类别的中心点,将每个样本分配给离其最近的中心点所代表的类别。算法步骤:随机选择K个样本作为初始的K个类别中心点。将每个样本分配到离其最近的类别中心点所代表的类别。根据分配结果,更新每个类别的中心点为该类别内所有样本的平均值。重复步骤2和步骤3,直到中心点不再更新或达到最大迭代次数。优点
- 机器学习中的 K-均值聚类算法及其优缺点
刘小董
学习心得机器学习
K-均值聚类算法是一种常用的无监督学习算法,用于将样本数据划分为K个不同的簇。其基本思想是通过迭代去优化簇的中心位置,使得每个样本点到所属簇的中心点的距离最小。算法步骤如下:初始化K个簇的中心点,可以随机选择K个样本点作为初始中心点。对于每个样本点,计算其与各个簇中心点的距离,并将其划分到距离最近的簇中。更新每个簇的中心点,将其设为该簇中所有样本点的均值。重复步骤2和步骤3,直到达到停止条件(例如
- 【经验分享】分类算法与聚类算法有什么区别?白话讲解
思通数科x
算法分类聚类
经常有人会提到这个问题,从我个人的观点和经验来说2者最明显的特征是:分类是有具体分类的数量,而聚类是没有固定的分类数量。你可以想象一下,分类算法就像是给你一堆水果,然后告诉你苹果、香蕉、橙子分别应该放在哪里。它已经知道每个水果属于哪个类别,所以你只需要按照这些规则把水果放到相应的篮子里。这就像是有一个现成的标签系统,你要做的就是把东西放到正确的位置。而聚类算法呢,更像是你面前有一堆乱七八糟的东西,
- 深度学习与机器学习的关系
数字化信息化智能化解决方案
深度学习机器学习人工智能
深度学习和机器学习的关系深度学习是机器学习的一个子领域,专注于使用神经网络,特别是深度神经网络(DNN)来解决各种问题。可以说,深度学习是机器学习的一种方法或技术。两者都致力于通过从数据中提取有用的信息或模式来自动改进算法的性能。机器学习涵盖了更广泛的算法和技术,包括决策树、支持向量机、随机森林、聚类算法等,而深度学习则专注于神经网络和相关的优化技术。优缺点比较机器学习:优点:通用性:机器学习算法
- GWO优化kmeans
2301_78492934
机器学习算法人工智能matlabkmeans聚类
GWO(灰狼优化器)是一种群体智能优化算法,它模拟了灰狼的社会结构和狩猎行为。GWO算法通过模拟灰狼的等级制度、狩猎策略和搜索机制来寻找问题的最优解。而K-means是一种经典的聚类算法,用于将数据点划分为K个簇。将GWO优化算法应用于K-means聚类中,主要是为了解决K-means算法对初始簇中心敏感和容易陷入局部最优解的问题。以下是GWO优化K-means的原理和过程的详细介绍:1.GWO算
- GA-kmedoid 遗传算法优化K-medoids聚类
2301_78492934
机器学习支持向量机人工智能matlab聚类
遗传算法优化K-medoids聚类是一种结合了遗传算法和K-medoids聚类算法的优化方法。遗传算法是一种基于自然选择和遗传机制的随机优化算法,它通过模拟生物进化过程中的遗传、交叉、变异等操作来寻找问题的最优解。而K-medoids聚类算法是一种基于划分的聚类方法,它通过选择K个数据点作为簇中心,将数据点分配到最近的簇中心,以最小化每个数据点到其所属簇中心的距离之和。K-medoids聚类算法是
- 聚类分析入门:使用Python和K-means算法进行数据聚类
Evaporator Core
python
文章标题:聚类分析入门:使用Python和K-means算法进行数据聚类简介聚类分析是机器学习中的一个重要任务,它涉及将数据集中的样本分成多个类别或簇,使得同一簇内的样本相似度较高,不同簇之间的样本相似度较低。K-means算法是一种常用的聚类算法,它通过迭代优化簇的中心点来实现聚类。本文将介绍如何使用Python编程语言和Scikit-learn库实现K-means算法,以及如何对数据进行聚类分
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,