手把手:Python加密货币价格预测9步走,视频+代码

手把手:Python加密货币价格预测9步走,视频+代码_第1张图片
image

YouTube网红小哥Siraj Raval系列视频又和大家见面啦!今天要讲的是加密货币价格预测,包含大量代码,还用一个视频详解具体步骤,不信你看了还学不会!

点击观看详解视频

时长22分钟

有中文字幕

预测加密货币价格其实很简单,用Python+Keras,再来一个循环神经网络(确切说是双向LSTM),只需要9步就可以了!比特币以太坊价格预测都不在话下。

这9个步骤是:

  • 数据处理

  • 建模

  • 训练模型

  • 测试模型

  • 分析价格变化

  • 分析价格百分比变化

  • 比较预测值和实际数据

  • 计算模型评估指标

  • 结合在一起:可视化

手把手:Python加密货币价格预测9步走,视频+代码_第2张图片
image

数据处理

导入Keras、Scikit learn的metrics、numpy、pandas、matplotlib这些我们需要的库。

## Keras for deep learningfrom keras.layers.core import Dense, Activation, Dropoutfrom keras.layers.recurrent import LSTMfrom keras.layers import Bidirectionalfrom keras.models import Sequential## Scikit learn for mapping metricsfrom sklearn.metrics import mean_squared_error#for loggingimport time##matrix mathimport numpy as npimport math##plottingimport matplotlib.pyplot as plt##data processingimport pandas as pd

首先,要对数据进行归一化处理。关于数据处理的原则,有张大图,大家可以在大数据文摘公众号后台对话框内回复“加密货币”查看高清图。

手把手:Python加密货币价格预测9步走,视频+代码_第3张图片
image
def load_data(filename, sequence_length):    """    Loads the bitcoin data        Arguments:    filename -- A string that represents where the .csv file can be located    sequence_length -- An integer of how many days should be looked at in a row        Returns:    X_train -- A tensor of shape (2400, 49, 35) that will be inputed into the model to train it    Y_train -- A tensor of shape (2400,) that will be inputed into the model to train it    X_test -- A tensor of shape (267, 49, 35) that will be used to test the model's proficiency    Y_test -- A tensor of shape (267,) that will be used to check the model's predictions    Y_daybefore -- A tensor of shape (267,) that represents the price of bitcoin the day before each Y_test value    unnormalized_bases -- A tensor of shape (267,) that will be used to get the true prices from the normalized ones    window_size -- An integer that represents how many days of X values the model can look at at once    """    #Read the data file    raw_data = pd.read_csv(filename, dtype = float).values        #Change all zeros to the number before the zero occurs    for x in range(0, raw_data.shape[0]):        for y in range(0, raw_data.shape[1]):            if(raw_data[x][y] == 0):                raw_data[x][y] = raw_data[x-1][y]        #Convert the file to a list    data = raw_data.tolist()        #Convert the data to a 3D array (a x b x c)     #Where a is the number of days, b is the window size, and c is the number of features in the data file    result = []    for index in range(len(data) - sequence_length):        result.append(data[index: index + sequence_length])        #Normalizing data by going through each window    #Every value in the window is divided by the first value in the window, and then 1 is subtracted    d0 = np.array(result)    dr = np.zeros_like(d0)    dr[:,1:,:] = d0[:,1:,:] / d0[:,0:1,:] - 1        #Keeping the unnormalized prices for Y_test    #Useful when graphing bitcoin price over time later    start = 2400    end = int(dr.shape[0] + 1)    unnormalized_bases = d0[start:end,0:1,20]        #Splitting data set into training (First 90% of data points) and testing data (last 10% of data points)    split_line = round(0.9 * dr.shape[0])    training_data = dr[:int(split_line), :]        #Shuffle the data    np.random.shuffle(training_data)        #Training Data    X_train = training_data[:, :-1]    Y_train = training_data[:, -1]    Y_train = Y_train[:, 20]        #Testing data    X_test = dr[int(split_line):, :-1]    Y_test = dr[int(split_line):, 49, :]    Y_test = Y_test[:, 20]    #Get the day before Y_test's price    Y_daybefore = dr[int(split_line):, 48, :]    Y_daybefore = Y_daybefore[:, 20]        #Get window size and sequence length    sequence_length = sequence_length    window_size = sequence_length - 1 #because the last value is reserved as the y value        return X_train, Y_train, X_test, Y_test, Y_daybefore, unnormalized_bases, window_size

建模

手把手:Python加密货币价格预测9步走,视频+代码_第4张图片
image

我们用到的是一个3层RNN,dropout率20%。

双向RNN基于这样的想法:时间t的输出不仅依赖于序列中的前一个元素,而且还可以取决于未来的元素。比如,要预测一个序列中缺失的单词,需要查看左侧和右侧的上下文。双向RNN是两个堆叠在一起的RNN,根据两个RNN的隐藏状态计算输出。

举个例子,这句话里缺失的单词gym要查看上下文才能知道(文摘菌:everyday?):

I go to the ( ) everyday to get fit.

def initialize_model(window_size, dropout_value, activation_function, loss_function, optimizer):    """    Initializes and creates the model to be used        Arguments:    window_size -- An integer that represents how many days of X_values the model can look at at once    dropout_value -- A decimal representing how much dropout should be incorporated at each level, in this case 0.2    activation_function -- A string to define the activation_function, in this case it is linear    loss_function -- A string to define the loss function to be used, in the case it is mean squared error    optimizer -- A string to define the optimizer to be used, in the case it is adam        Returns:    model -- A 3 layer RNN with 100*dropout_value dropout in each layer that uses activation_function as its activation             function, loss_function as its loss function, and optimizer as its optimizer    """    #Create a Sequential model using Keras    model = Sequential()    #First recurrent layer with dropout    model.add(Bidirectional(LSTM(window_size, return_sequences=True), input_shape=(window_size, X_train.shape[-1]),))    model.add(Dropout(dropout_value))    #Second recurrent layer with dropout    model.add(Bidirectional(LSTM((window_size*2), return_sequences=True)))    model.add(Dropout(dropout_value))    #Third recurrent layer    model.add(Bidirectional(LSTM(window_size, return_sequences=False)))    #Output layer (returns the predicted value)    model.add(Dense(units=1))        #Set activation function    model.add(Activation(activation_function))    #Set loss function and optimizer    model.compile(loss=loss_function, optimizer=optimizer)        return model

训练模型

这里取batch size = 1024,epoch times = 100。我们需要最小化均方误差MSE。

def fit_model(model, X_train, Y_train, batch_num, num_epoch, val_split):    """    Fits the model to the training data        Arguments:    model -- The previously initalized 3 layer Recurrent Neural Network    X_train -- A tensor of shape (2400, 49, 35) that represents the x values of the training data    Y_train -- A tensor of shape (2400,) that represents the y values of the training data    batch_num -- An integer representing the batch size to be used, in this case 1024    num_epoch -- An integer defining the number of epochs to be run, in this case 100    val_split -- A decimal representing the proportion of training data to be used as validation data        Returns:    model -- The 3 layer Recurrent Neural Network that has been fitted to the training data    training_time -- An integer representing the amount of time (in seconds) that the model was training    """    #Record the time the model starts training    start = time.time()    #Train the model on X_train and Y_train    model.fit(X_train, Y_train, batch_size= batch_num, nb_epoch=num_epoch, validation_split= val_split)    #Get the time it took to train the model (in seconds)    training_time = int(math.floor(time.time() - start))    return model, training_time

测试模型

def test_model(model, X_test, Y_test, unnormalized_bases):    """    Test the model on the testing data        Arguments:    model -- The previously fitted 3 layer Recurrent Neural Network    X_test -- A tensor of shape (267, 49, 35) that represents the x values of the testing data    Y_test -- A tensor of shape (267,) that represents the y values of the testing data    unnormalized_bases -- A tensor of shape (267,) that can be used to get unnormalized data points        Returns:    y_predict -- A tensor of shape (267,) that represnts the normalized values that the model predicts based on X_test    real_y_test -- A tensor of shape (267,) that represents the actual prices of bitcoin throughout the testing period    real_y_predict -- A tensor of shape (267,) that represents the model's predicted prices of bitcoin    fig -- A branch of the graph of the real predicted prices of bitcoin versus the real prices of bitcoin    """    #Test the model on X_Test    y_predict = model.predict(X_test)    #Create empty 2D arrays to store unnormalized values    real_y_test = np.zeros_like(Y_test)    real_y_predict = np.zeros_like(y_predict)    #Fill the 2D arrays with the real value and the predicted value by reversing the normalization process    for i in range(Y_test.shape[0]):        y = Y_test[i]        predict = y_predict[i]        real_y_test[i] = (y+1)*unnormalized_bases[i]        real_y_predict[i] = (predict+1)*unnormalized_bases[i]    #Plot of the predicted prices versus the real prices    fig = plt.figure(figsize=(10,5))    ax = fig.add_subplot(111)    ax.set_title("Bitcoin Price Over Time")    plt.plot(real_y_predict, color = 'green', label = 'Predicted Price')    plt.plot(real_y_test, color = 'red', label = 'Real Price')    ax.set_ylabel("Price (USD)")    ax.set_xlabel("Time (Days)")    ax.legend()        return y_predict, real_y_test, real_y_predict, fig

分析价格变化

def price_change(Y_daybefore, Y_test, y_predict):    """    Calculate the percent change between each value and the day before        Arguments:    Y_daybefore -- A tensor of shape (267,) that represents the prices of each day before each price in Y_test    Y_test -- A tensor of shape (267,) that represents the normalized y values of the testing data    y_predict -- A tensor of shape (267,) that represents the normalized y values of the model's predictions        Returns:    Y_daybefore -- A tensor of shape (267, 1) that represents the prices of each day before each price in Y_test    Y_test -- A tensor of shape (267, 1) that represents the normalized y values of the testing data    delta_predict -- A tensor of shape (267, 1) that represents the difference between predicted and day before values    delta_real -- A tensor of shape (267, 1) that represents the difference between real and day before values    fig -- A plot representing percent change in bitcoin price per day,    """    #Reshaping Y_daybefore and Y_test    Y_daybefore = np.reshape(Y_daybefore, (-1, 1))    Y_test = np.reshape(Y_test, (-1, 1))    #The difference between each predicted value and the value from the day before    delta_predict = (y_predict - Y_daybefore) / (1+Y_daybefore)    #The difference between each true value and the value from the day before    delta_real = (Y_test - Y_daybefore) / (1+Y_daybefore)    #Plotting the predicted percent change versus the real percent change    fig = plt.figure(figsize=(10, 6))    ax = fig.add_subplot(111)    ax.set_title("Percent Change in Bitcoin Price Per Day")    plt.plot(delta_predict, color='green', label = 'Predicted Percent Change')    plt.plot(delta_real, color='red', label = 'Real Percent Change')    plt.ylabel("Percent Change")    plt.xlabel("Time (Days)")    ax.legend()    plt.show()        return Y_daybefore, Y_test, delta_predict, delta_real, fig

分析价格百分比变化

def binary_price(delta_predict, delta_real):    """    Converts percent change to a binary 1 or 0, where 1 is an increase and 0 is a decrease/no change        Arguments:    delta_predict -- A tensor of shape (267, 1) that represents the predicted percent change in price    delta_real -- A tensor of shape (267, 1) that represents the real percent change in price        Returns:    delta_predict_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_predict    delta_real_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_real    """    #Empty arrays where a 1 represents an increase in price and a 0 represents a decrease in price    delta_predict_1_0 = np.empty(delta_predict.shape)    delta_real_1_0 = np.empty(delta_real.shape)    #If the change in price is greater than zero, store it as a 1    #If the change in price is less than zero, store it as a 0    for i in range(delta_predict.shape[0]):        if delta_predict[i][0] > 0:            delta_predict_1_0[i][0] = 1        else:            delta_predict_1_0[i][0] = 0    for i in range(delta_real.shape[0]):        if delta_real[i][0] > 0:            delta_real_1_0[i][0] = 1        else:            delta_real_1_0[i][0] = 0        return delta_predict_1_0, delta_real_1_0

比较预测值和实际数据

def find_positives_negatives(delta_predict_1_0, delta_real_1_0):    """    Finding the number of false positives, false negatives, true positives, true negatives        Arguments:     delta_predict_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_predict    delta_real_1_0 -- A tensor of shape (267, 1) that represents the binary version of delta_real        Returns:    true_pos -- An integer that represents the number of true positives achieved by the model    false_pos -- An integer that represents the number of false positives achieved by the model    true_neg -- An integer that represents the number of true negatives achieved by the model    false_neg -- An integer that represents the number of false negatives achieved by the model    """    #Finding the number of false positive/negatives and true positives/negatives    true_pos = 0    false_pos = 0    true_neg = 0    false_neg = 0    for i in range(delta_real_1_0.shape[0]):        real = delta_real_1_0[i][0]        predicted = delta_predict_1_0[i][0]        if real == 1:            if predicted == 1:                true_pos += 1            else:                false_neg += 1        elif real == 0:            if predicted == 0:                true_neg += 1            else:                false_pos += 1    return true_pos, false_pos, true_neg, false_neg

计算模型评估指标

def calculate_statistics(true_pos, false_pos, true_neg, false_neg, y_predict, Y_test):   """   Calculate various statistics to assess performance      Arguments:   true_pos -- An integer that represents the number of true positives achieved by the model   false_pos -- An integer that represents the number of false positives achieved by the model   true_neg -- An integer that represents the number of true negatives achieved by the model   false_neg -- An integer that represents the number of false negatives achieved by the model   Y_test -- A tensor of shape (267, 1) that represents the normalized y values of the testing data   y_predict -- A tensor of shape (267, 1) that represents the normalized y values of the model's predictions      Returns:   precision -- How often the model gets a true positive compared to how often it returns a positive   recall -- How often the model gets a true positive compared to how often is hould have gotten a positive   F1 -- The weighted average of recall and precision   Mean Squared Error -- The average of the squares of the differences between predicted and real values   """   precision = float(true_pos) / (true_pos + false_pos)   recall = float(true_pos) / (true_pos + false_neg)   F1 = float(2 * precision * recall) / (precision + recall)   #Get Mean Squared Error   MSE = mean_squared_error(y_predict.flatten(), Y_test.flatten())   return precision, recall, F1, MSE

结合在一起:可视化

终于可以看看我们的成果啦!

首先是预测价格vs实际价格:

y_predict, real_y_test, real_y_predict, fig1 = test_model(model, X_test, Y_test, unnormalized_bases)#Show the plotplt.show(fig1)

手把手:Python加密货币价格预测9步走,视频+代码_第5张图片
image

然后是预测的百分比变化vs实际的百分比变化,值得注意的是,这里的预测相对实际来说波动更大,这是模型可以提高的部分:

Y_daybefore, Y_test, delta_predict, delta_real, fig2 = price_change(Y_daybefore, Y_test, y_predict)

Show the plot

plt.show(fig2)

手把手:Python加密货币价格预测9步走,视频+代码_第6张图片
image

最终模型表现是这样的:

Precision: 0.62
Recall: 0.553571428571
F1 score: 0.584905660377
Mean Squared Error: 0.0430756924477

怎么样,看完有没有跃跃欲试呢?

代码下载地址:

https://github.com/llSourcell/ethereum_future/blob/master/A%20Deep%20Learning%20Approach%20to%20Predicting%20Cryptocurrency%20Prices.ipynb

原视频地址:

https://www.youtube.com/watch?v=G5Mx7yYdEhE

作 者 | Siraj Raval 大数据文摘经授权译制

翻 译 | 糖竹子、狗小白、邓子稷

时间轴 | 韩振峰、Barbara、菜菜Tom

监 制 | 龙牧雪

你可能感兴趣的:(手把手:Python加密货币价格预测9步走,视频+代码)