MapReduce(MR)的文件拆分:FileInputFormat

   在map之前会对要处理的文件进行拆分,按照定义的格式进行都写操作。主要是在InputFormat中,InputFormat是一个抽象类,主要有两个抽象方法:

1,public abstract  List getSplits(JobContext context) throws IOException, InterruptedException;

确认输入的且分原则

2,public abstract  RecordReader createRecordReader(InputSplit split, TaskAttemptContext context  ) throws IOException,InterruptedException;

按照指定格式读取数据

在起子类中需要实现这两个方法:

FileInputFormat:

配置FileInputFormat的参数:

1,mapred.input.pathFilter.class:输入文件过滤器,通过过滤器的文件才会加入InputFormat

  public static void setInputPathFilter(Job job, Class filter) {
    job.getConfiguration().setClass("mapred.input.pathFilter.class", filter, PathFilter.class);
  }

2,mapred.min.split.size:最小的划分大

public static void setMinInputSplitSize(Job job,long size) {
    job.getConfiguration().setLong("mapred.min.split.size", size);
  }

3,mapred.max.split.size:最大的划分大小;

  public static void setMaxInputSplitSize(Job job,long size) {
    job.getConfiguration().setLong("mapred.max.split.size", size);
  }

4, mapred.input.dir:输入路径,用逗号做分割。

   conf.set("mapred.input.dir", dirs == null ? dirStr : dirs + "," + dirStr);

FileInputFormat实现了InputFormat的getSplits()方法,将输入的文件划分为InputSplit(输入块)。

 /**
   * Generate the list of files and make them into FileSplits.
   */
  public List getSplits(JobContext job
                                    ) throws IOException {
    long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
    long maxSize = getMaxSplitSize(job);

    // generate splits
    List splits = new ArrayList();
    for (FileStatus file: listStatus(job)) {
      Path path = file.getPath();
      FileSystem fs = path.getFileSystem(job.getConfiguration());
      long length = file.getLen();
      BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length);
      if ((length != 0) && isSplitable(job, path)) {
        long blockSize = file.getBlockSize();
        long splitSize = computeSplitSize(blockSize, minSize, maxSize);

        long bytesRemaining = length;
        while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
          int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
          splits.add(new FileSplit(path, length-bytesRemaining, splitSize,
                                   blkLocations[blkIndex].getHosts()));
          bytesRemaining -= splitSize;
        }
        
        if (bytesRemaining != 0) {
          splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining,
                     blkLocations[blkLocations.length-1].getHosts()));
        }
      } else if (length != 0) {
        splits.add(new FileSplit(path, 0, length, blkLocations[0].getHosts()));
      } else {
        //Create empty hosts array for zero length files
        splits.add(new FileSplit(path, 0, length, new String[0]));
      }
    }
    LOG.debug("Total # of splits: " + splits.size());
    return splits;
  }

文件的划分是依据maxsizeBlockSizeminsize来的,

protected long computeSplitSize(long blockSize, long minSize,
                                  long maxSize) {
    return Math.max(minSize, Math.min(maxSize, blockSize));
  }

另一个方法是:protected List listStatus(JobContext job ) throws IOException

递归获取输入数据中的文件,其中的job包含前面的那几个参数,是系统的配置Configuration
/** List input directories.
   * Subclasses may override to, e.g., select only files matching a regular
   * expression.
   *
   * @param job the job to list input paths for
   * @return array of FileStatus objects
   * @throws IOException if zero items.
   */
  protected List listStatus(JobContext job
                                        ) throws IOException {
    List result = new ArrayList();
    Path[] dirs = getInputPaths(job);
    if (dirs.length == 0) {
      throw new IOException("No input paths specified in job");
    }

    List errors = new ArrayList();
    
    // creates a MultiPathFilter with the hiddenFileFilter and the
    // user provided one (if any).
    List filters = new ArrayList();
    filters.add(hiddenFileFilter);
    PathFilter jobFilter = getInputPathFilter(job);
    if (jobFilter != null) {
      filters.add(jobFilter);
    }
    PathFilter inputFilter = new MultiPathFilter(filters);
    
    for (int i=0; i < dirs.length; ++i) {
      Path p = dirs[i];
      FileSystem fs = p.getFileSystem(job.getConfiguration());
      FileStatus[] matches = fs.globStatus(p, inputFilter);
      if (matches == null) {
        errors.add(new IOException("Input path does not exist: " + p));
      } else if (matches.length == 0) {
        errors.add(new IOException("Input Pattern " + p + " matches 0 files"));
      } else {
        for (FileStatus globStat: matches) {
          if (globStat.isDir()) {
            for(FileStatus stat: fs.listStatus(globStat.getPath(),
                inputFilter)) {
              result.add(stat);
            }          
          } else {
            result.add(globStat);
          }
        }
      }
    }

    if (!errors.isEmpty()) {
      throw new InvalidInputException(errors);
    }
    LOG.info("Total input paths to process : " + result.size());
    return result;
  }

切分之后有RecordReader来读取,

FileInputFormat没有对应的RecordReader,他的两个子类:

SequenceFileInputFormat二进制形式存放的键/值文件

TextInputFormat是文本文件处理,

他们的createRecordReader()分别返回SequenceFileRecordReaderLineRecordReader实例。Hadoop默认的InputFormat是TextInputFormat,重写了FileInputFormat中的createRecordReader和isSplitable方法。该类使用的reader是LineRecordReader,即以回车键(CR = 13)或换行符(LF = 10)为行分隔符。

你可能感兴趣的:(Hadoop)