高并发网络编程之epoll详解

在linux 没有实现epoll事件驱动机制之前,我们一般选择用select或者poll等IO多路复用的方法来实现并发服务程序。在大数据、高并发、集群等一些名词唱得火热之年代,select和poll的用武之地越来越有限,风头已经被epoll占尽。

本文便来介绍epoll的实现机制,并附带讲解一下select和poll。通过对比其不同的实现机制,真正理解为何epoll能实现高并发。

select()和poll() IO多路复用模型

select的缺点:

  1. 单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数量,但由于select采用轮询的方式扫描文件描述符,文件描述符数量越多,性能越差;(在linux内核头文件中,有这样的定义:#define __FD_SETSIZE    1024)
  2. 内核 / 用户空间内存拷贝问题,select需要复制大量的句柄数据结构,产生巨大的开销;
  3. select返回的是含有整个句柄的数组,应用程序需要遍历整个数组才能发现哪些句柄发生了事件;
  4. select的触发方式是水平触发,应用程序如果没有完成对一个已经就绪的文件描述符进行IO操作,那么之后每次select调用还是会将这些文件描述符通知进程。

相比select模型,poll使用链表保存文件描述符,因此没有了监视文件数量的限制,但其他三个缺点依然存在。

拿select模型为例,假设我们的服务器需要支持100万的并发连接,则在__FD_SETSIZE 为1024的情况下,则我们至少需要开辟1k个进程才能实现100万的并发连接。除了进程间上下文切换的时间消耗外,从内核/用户空间大量的无脑内存拷贝、数组轮询等,是系统难以承受的。因此,基于select模型的服务器程序,要达到10万级别的并发访问,是一个很难完成的任务。

因此,该epoll上场了。

epoll IO多路复用模型实现机制

由于epoll的实现机制与select/poll机制完全不同,上面所说的 select的缺点在epoll上不复存在。

设想一下如下场景:有100万个客户端同时与一个服务器进程保持着TCP连接。而每一时刻,通常只有几百上千个TCP连接是活跃的(事实上大部分场景都是这种情况)。如何实现这样的高并发?

在select/poll时代,服务器进程每次都把这100万个连接告诉操作系统(从用户态复制句柄数据结构到内核态),让操作系统内核去查询这些套接字上是否有事件发生,轮询完后,再将句柄数据复制到用户态,让服务器应用程序轮询处理已发生的网络事件,这一过程资源消耗较大,因此,select/poll一般只能处理几千的并发连接。

epoll的设计和实现与select完全不同。epoll通过在Linux内核中申请一个简易的文件系统(文件系统一般用什么数据结构实现?B+树)。把原先的select/poll调用分成了3个部分:

1)调用epoll_create()建立一个epoll对象(在epoll文件系统中为这个句柄对象分配资源)

2)调用epoll_ctl向epoll对象中添加这100万个连接的套接字

3)调用epoll_wait收集发生的事件的连接

如此一来,要实现上面说是的场景,只需要在进程启动时建立一个epoll对象,然后在需要的时候向这个epoll对象中添加或者删除连接。同时,epoll_wait的效率也非常高,因为调用epoll_wait时,并没有一股脑的向操作系统复制这100万个连接的句柄数据,内核也不需要去遍历全部的连接。

下面来看看Linux内核具体的epoll机制实现思路。

当某一进程调用epoll_create方法时,Linux内核会创建一个eventpoll结构体,这个结构体中有两个成员与epoll的使用方式密切相关。eventpoll结构体如下所示:

[cpp] view plain copy
print ?
  1. struct eventpoll{  
  2.     ….  
  3.     /*红黑树的根节点,这颗树中存储着所有添加到epoll中的需要监控的事件*/  
  4.     struct rb_root  rbr;  
  5.     /*双链表中则存放着将要通过epoll_wait返回给用户的满足条件的事件*/  
  6.     struct list_head rdlist;  
  7.     ….  
  8. };  
struct eventpoll{
    ....
    /*红黑树的根节点,这颗树中存储着所有添加到epoll中的需要监控的事件*/
    struct rb_root  rbr;
    /*双链表中则存放着将要通过epoll_wait返回给用户的满足条件的事件*/
    struct list_head rdlist;
    ....
};

每一个epoll对象都有一个独立的eventpoll结构体,用于存放通过epoll_ctl方法向epoll对象中添加进来的事件。这些事件都会挂载在红黑树中,如此,重复添加的事件就可以通过红黑树而高效的识别出来(红黑树的插入时间效率是lgn,其中n为树的高度)。

而所有添加到epoll中的事件都会与设备(网卡)驱动程序建立回调关系,也就是说,当相应的事件发生时会调用这个回调方法。这个回调方法在内核中叫ep_poll_callback,它会将发生的事件添加到rdlist双链表中。

在epoll中,对于每一个事件,都会建立一个epitem结构体,如下所示:

[cpp] view plain copy
print ?
  1. struct epitem{  
  2.     struct rb_node  rbn;//红黑树节点  
  3.     struct list_head    rdllink;//双向链表节点  
  4.     struct epoll_filefd  ffd;  //事件句柄信息  
  5.     struct eventpoll *ep;    //指向其所属的eventpoll对象  
  6.     struct epoll_event event; //期待发生的事件类型  
  7. }  
struct epitem{
    struct rb_node  rbn;//红黑树节点
    struct list_head    rdllink;//双向链表节点
    struct epoll_filefd  ffd;  //事件句柄信息
    struct eventpoll *ep;    //指向其所属的eventpoll对象
    struct epoll_event event; //期待发生的事件类型
}

当调用epoll_wait检查是否有事件发生时,只需要检查eventpoll对象中的rdlist双链表中是否有epitem元素即可。如果rdlist不为空,则把发生的事件复制到用户态,同时将事件数量返回给用户。

epoll.jpg

epoll数据结构示意图

从上面的讲解可知:通过红黑树和双链表数据结构,并结合回调机制,造就了epoll的高效。

OK,讲解完了Epoll的机理,我们便能很容易掌握epoll的用法了。一句话描述就是:三步曲。

第一步:epoll_create()系统调用。此调用返回一个句柄,之后所有的使用都依靠这个句柄来标识。

第二步:epoll_ctl()系统调用。通过此调用向epoll对象中添加、删除、修改感兴趣的事件,返回0标识成功,返回-1表示失败。

第三部:epoll_wait()系统调用。通过此调用收集收集在epoll监控中已经发生的事件。

最后,附上一个epoll编程实例。(作者为sparkliang)

[cpp] view plain copy
print ?
  1. //     
  2. // a simple echo server using epoll in linux    
  3. //     
  4. // 2009-11-05    
  5. // 2013-03-22:修改了几个问题,1是/n格式问题,2是去掉了原代码不小心加上的ET模式;  
  6. // 本来只是简单的示意程序,决定还是加上 recv/send时的buffer偏移  
  7. // by sparkling    
  8. //     
  9. #include     
  10. #include     
  11. #include     
  12. #include     
  13. #include     
  14. #include     
  15. #include     
  16. #include     
  17. #include     
  18. using namespace std;    
  19. #define MAX_EVENTS 500    
  20. struct myevent_s    
  21. {    
  22.     int fd;    
  23.     void (*call_back)(int fd, int events, void *arg);    
  24.     int events;    
  25.     void *arg;    
  26.     int status; // 1: in epoll wait list, 0 not in    
  27.     char buff[128]; // recv data buffer    
  28.     int len, s_offset;    
  29.     long last_active; // last active time    
  30. };    
  31. // set event    
  32. void EventSet(myevent_s *ev, int fd, void (*call_back)(intintvoid*), void *arg)    
  33. {    
  34.     ev->fd = fd;    
  35.     ev->call_back = call_back;    
  36.     ev->events = 0;    
  37.     ev->arg = arg;    
  38.     ev->status = 0;  
  39.     bzero(ev->buff, sizeof(ev->buff));  
  40.     ev->s_offset = 0;    
  41.     ev->len = 0;  
  42.     ev->last_active = time(NULL);    
  43. }    
  44. // add/mod an event to epoll    
  45. void EventAdd(int epollFd, int events, myevent_s *ev)    
  46. {    
  47.     struct epoll_event epv = {0, {0}};    
  48.     int op;    
  49.     epv.data.ptr = ev;    
  50.     epv.events = ev->events = events;    
  51.     if(ev->status == 1){    
  52.         op = EPOLL_CTL_MOD;    
  53.     }    
  54.     else{    
  55.         op = EPOLL_CTL_ADD;    
  56.         ev->status = 1;    
  57.     }    
  58.     if(epoll_ctl(epollFd, op, ev->fd, &epv) < 0)    
  59.         printf(”Event Add failed[fd=%d], evnets[%d]\n”, ev->fd, events);    
  60.     else    
  61.         printf(”Event Add OK[fd=%d], op=%d, evnets[%0X]\n”, ev->fd, op, events);    
  62. }    
  63. // delete an event from epoll    
  64. void EventDel(int epollFd, myevent_s *ev)    
  65. {    
  66.     struct epoll_event epv = {0, {0}};    
  67.     if(ev->status != 1) return;    
  68.     epv.data.ptr = ev;    
  69.     ev->status = 0;  
  70.     epoll_ctl(epollFd, EPOLL_CTL_DEL, ev->fd, &epv);    
  71. }    
  72. int g_epollFd;    
  73. myevent_s g_Events[MAX_EVENTS+1]; // g_Events[MAX_EVENTS] is used by listen fd    
  74. void RecvData(int fd, int events, void *arg);    
  75. void SendData(int fd, int events, void *arg);    
  76. // accept new connections from clients    
  77. void AcceptConn(int fd, int events, void *arg)    
  78. {    
  79.     struct sockaddr_in sin;    
  80.     socklen_t len = sizeof(struct sockaddr_in);    
  81.     int nfd, i;    
  82.     // accept    
  83.     if((nfd = accept(fd, (struct sockaddr*)&sin, &len)) == -1)    
  84.     {    
  85.         if(errno != EAGAIN && errno != EINTR)    
  86.         {    
  87.         }  
  88.         printf(”%s: accept, %d”, __func__, errno);    
  89.         return;    
  90.     }    
  91.     do    
  92.     {    
  93.         for(i = 0; i < MAX_EVENTS; i++)    
  94.         {    
  95.             if(g_Events[i].status == 0)    
  96.             {    
  97.                 break;    
  98.             }    
  99.         }    
  100.         if(i == MAX_EVENTS)    
  101.         {    
  102.             printf(”%s:max connection limit[%d].”, __func__, MAX_EVENTS);    
  103.             break;    
  104.         }    
  105.         // set nonblocking  
  106.         int iret = 0;  
  107.         if((iret = fcntl(nfd, F_SETFL, O_NONBLOCK)) < 0)  
  108.         {  
  109.             printf(”%s: fcntl nonblocking failed:%d”, __func__, iret);  
  110.             break;  
  111.         }  
  112.         // add a read event for receive data    
  113.         EventSet(&g_Events[i], nfd, RecvData, &g_Events[i]);    
  114.         EventAdd(g_epollFd, EPOLLIN, &g_Events[i]);    
  115.     }while(0);    
  116.     printf(”new conn[%s:%d][time:%d], pos[%d]\n”, inet_ntoa(sin.sin_addr),  
  117.             ntohs(sin.sin_port), g_Events[i].last_active, i);    
  118. }    
  119. // receive data    
  120. void RecvData(int fd, int events, void *arg)    
  121. {    
  122.     struct myevent_s *ev = (struct myevent_s*)arg;    
  123.     int len;    
  124.     // receive data  
  125.     len = recv(fd, ev->buff+ev->len, sizeof(ev->buff)-1-ev->len, 0);      
  126.     EventDel(g_epollFd, ev);  
  127.     if(len > 0)  
  128.     {  
  129.         ev->len += len;  
  130.         ev->buff[len] = ’\0’;    
  131.         printf(”C[%d]:%s\n”, fd, ev->buff);    
  132.         // change to send event    
  133.         EventSet(ev, fd, SendData, ev);    
  134.         EventAdd(g_epollFd, EPOLLOUT, ev);    
  135.     }    
  136.     else if(len == 0)    
  137.     {    
  138.         close(ev->fd);    
  139.         printf(”[fd=%d] pos[%d], closed gracefully.\n”, fd, ev-g_Events);    
  140.     }    
  141.     else    
  142.     {    
  143.         close(ev->fd);    
  144.         printf(”recv[fd=%d] error[%d]:%s\n”, fd, errno, strerror(errno));    
  145.     }    
  146. }    
  147. // send data    
  148. void SendData(int fd, int events, void *arg)    
  149. {    
  150.     struct myevent_s *ev = (struct myevent_s*)arg;    
  151.     int len;    
  152.     // send data    
  153.     len = send(fd, ev->buff + ev->s_offset, ev->len - ev->s_offset, 0);  
  154.     if(len > 0)    
  155.     {  
  156.         printf(”send[fd=%d], [%d<->%d]%s\n”, fd, len, ev->len, ev->buff);  
  157.         ev->s_offset += len;  
  158.         if(ev->s_offset == ev->len)  
  159.         {  
  160.             // change to receive event  
  161.             EventDel(g_epollFd, ev);    
  162.             EventSet(ev, fd, RecvData, ev);    
  163.             EventAdd(g_epollFd, EPOLLIN, ev);    
  164.         }  
  165.     }    
  166.     else    
  167.     {    
  168.         close(ev->fd);    
  169.         EventDel(g_epollFd, ev);    
  170.         printf(”send[fd=%d] error[%d]\n”, fd, errno);    
  171.     }    
  172. }    
  173. void InitListenSocket(int epollFd, short port)    
  174. {    
  175.     int listenFd = socket(AF_INET, SOCK_STREAM, 0);    
  176.     fcntl(listenFd, F_SETFL, O_NONBLOCK); // set non-blocking    
  177.     printf(”server listen fd=%d\n”, listenFd);    
  178.     EventSet(&g_Events[MAX_EVENTS], listenFd, AcceptConn, &g_Events[MAX_EVENTS]);    
  179.     // add listen socket    
  180.     EventAdd(epollFd, EPOLLIN, &g_Events[MAX_EVENTS]);    
  181.     // bind & listen    
  182.     sockaddr_in sin;    
  183.     bzero(&sin, sizeof(sin));    
  184.     sin.sin_family = AF_INET;    
  185.     sin.sin_addr.s_addr = INADDR_ANY;    
  186.     sin.sin_port = htons(port);    
  187.     bind(listenFd, (const sockaddr*)&sin, sizeof(sin));    
  188.     listen(listenFd, 5);    
  189. }    
  190. int main(int argc, char **argv)    
  191. {    
  192.     unsigned short port = 12345; // default port    
  193.     if(argc == 2){    
  194.         port = atoi(argv[1]);    
  195.     }    
  196.     // create epoll    
  197.     g_epollFd = epoll_create(MAX_EVENTS);    
  198.     if(g_epollFd <= 0) printf(“create epoll failed.%d\n”, g_epollFd);    
  199.     // create & bind listen socket, and add to epoll, set non-blocking    
  200.     InitListenSocket(g_epollFd, port);    
  201.     // event loop    
  202.     struct epoll_event events[MAX_EVENTS];    
  203.     printf(”server running:port[%d]\n”, port);    
  204.     int checkPos = 0;    
  205.     while(1){    
  206.         // a simple timeout check here, every time 100, better to use a mini-heap, and add timer event    
  207.         long now = time(NULL);    
  208.         for(int i = 0; i < 100; i++, checkPos++) // doesn’t check listen fd    
  209.         {    
  210.             if(checkPos == MAX_EVENTS) checkPos = 0; // recycle    
  211.             if(g_Events[checkPos].status != 1) continue;    
  212.             long duration = now - g_Events[checkPos].last_active;    
  213.             if(duration >= 60) // 60s timeout    
  214.             {    
  215.                 close(g_Events[checkPos].fd);    
  216.                 printf(”[fd=%d] timeout[%d–%d].\n”, g_Events[checkPos].fd, g_Events[checkPos].last_active, now);    
  217.                 EventDel(g_epollFd, &g_Events[checkPos]);    
  218.             }    
  219.         }    
  220.         // wait for events to happen    
  221.         int fds = epoll_wait(g_epollFd, events, MAX_EVENTS, 1000);    
  222.         if(fds < 0){    
  223.             printf(”epoll_wait error, exit\n”);    
  224.             break;    
  225.         }    
  226.         for(int i = 0; i < fds; i++){    
  227.             myevent_s *ev = (struct myevent_s*)events[i].data.ptr;    
  228.             if((events[i].events&EPOLLIN)&&(ev->events&EPOLLIN)) // read event    
  229.             {    
  230.                 ev->call_back(ev->fd, events[i].events, ev->arg);    
  231.             }    
  232.             if((events[i].events&EPOLLOUT)&&(ev->events&EPOLLOUT)) // write event    
  233.             {    
  234.                 ev->call_back(ev->fd, events[i].events, ev->arg);    
  235.             }    
  236.         }    
  237.     }    
  238.     // free resource    
  239.     return 0;    
  240. }     
//   
// a simple echo server using epoll in linux  
//   
// 2009-11-05  
// 2013-03-22:修改了几个问题,1是/n格式问题,2是去掉了原代码不小心加上的ET模式;
// 本来只是简单的示意程序,决定还是加上 recv/send时的buffer偏移
// by sparkling  
//   




include

include

include

include

include

include

include

include

include

using namespace std;

define MAX_EVENTS 500

struct myevent_s
{
int fd;
void (*call_back)(int fd, int events, void *arg);
int events;
void *arg;
int status; // 1: in epoll wait list, 0 not in
char buff[128]; // recv data buffer
int len, s_offset;
long last_active; // last active time
};
// set event
void EventSet(myevent_s ev, int fd, void (*call_back)(int, int, void), void *arg)
{
ev->fd = fd;
ev->call_back = call_back;
ev->events = 0;
ev->arg = arg;
ev->status = 0;
bzero(ev->buff, sizeof(ev->buff));
ev->s_offset = 0;
ev->len = 0;
ev->last_active = time(NULL);
}
// add/mod an event to epoll
void EventAdd(int epollFd, int events, myevent_s *ev)
{
struct epoll_event epv = {0, {0}};
int op;
epv.data.ptr = ev;
epv.events = ev->events = events;
if(ev->status == 1){
op = EPOLL_CTL_MOD;
}
else{
op = EPOLL_CTL_ADD;
ev->status = 1;
}
if(epoll_ctl(epollFd, op, ev->fd, &epv) < 0)
printf("Event Add failed[fd=%d], evnets[%d]\n", ev->fd, events);
else
printf("Event Add OK[fd=%d], op=%d, evnets[%0X]\n", ev->fd, op, events);
}
// delete an event from epoll
void EventDel(int epollFd, myevent_s *ev)
{
struct epoll_event epv = {0, {0}};
if(ev->status != 1) return;
epv.data.ptr = ev;
ev->status = 0;
epoll_ctl(epollFd, EPOLL_CTL_DEL, ev->fd, &epv);
}
int g_epollFd;
myevent_s g_Events[MAX_EVENTS+1]; // g_Events[MAX_EVENTS] is used by listen fd
void RecvData(int fd, int events, void *arg);
void SendData(int fd, int events, void *arg);
// accept new connections from clients
void AcceptConn(int fd, int events, void *arg)
{
struct sockaddr_in sin;
socklen_t len = sizeof(struct sockaddr_in);
int nfd, i;
// accept
if((nfd = accept(fd, (struct sockaddr*)&sin, &len)) == -1)
{
if(errno != EAGAIN && errno != EINTR)
{
}
printf("%s: accept, %d", func, errno);
return;
}
do
{
for(i = 0; i < MAX_EVENTS; i++)
{
if(g_Events[i].status == 0)
{
break;
}
}
if(i == MAX_EVENTS)
{
printf("%s:max connection limit[%d].", func, MAX_EVENTS);
break;
}
// set nonblocking
int iret = 0;
if((iret = fcntl(nfd, F_SETFL, O_NONBLOCK)) < 0)
{
printf("%s: fcntl nonblocking failed:%d", func, iret);
break;
}
// add a read event for receive data
EventSet(&g_Events[i], nfd, RecvData, &g_Events[i]);
EventAdd(g_epollFd, EPOLLIN, &g_Events[i]);
}while(0);
printf("new conn[%s:%d][time:%d], pos[%d]\n", inet_ntoa(sin.sin_addr),
ntohs(sin.sin_port), g_Events[i].last_active, i);
}
// receive data
void RecvData(int fd, int events, void *arg)
{
struct myevent_s ev = (struct myevent_s)arg;
int len;
// receive data
len = recv(fd, ev->buff+ev->len, sizeof(ev->buff)-1-ev->len, 0);
EventDel(g_epollFd, ev);
if(len > 0)
{
ev->len += len;
ev->buff[len] = '\0';
printf("C[%d]:%s\n", fd, ev->buff);
// change to send event
EventSet(ev, fd, SendData, ev);
EventAdd(g_epollFd, EPOLLOUT, ev);
}
else if(len == 0)
{
close(ev->fd);
printf("[fd=%d] pos[%d], closed gracefully.\n", fd, ev-g_Events);
}
else
{
close(ev->fd);
printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
}
}
// send data
void SendData(int fd, int events, void *arg)
{
struct myevent_s ev = (struct myevent_s)arg;
int len;
// send data
len = send(fd, ev->buff + ev->s_offset, ev->len - ev->s_offset, 0);
if(len > 0)
{
printf("send[fd=%d], [%d<->%d]%s\n", fd, len, ev->len, ev->buff);
ev->s_offset += len;
if(ev->s_offset == ev->len)
{
// change to receive event
EventDel(g_epollFd, ev);
EventSet(ev, fd, RecvData, ev);
EventAdd(g_epollFd, EPOLLIN, ev);
}
}
else
{
close(ev->fd);
EventDel(g_epollFd, ev);
printf("send[fd=%d] error[%d]\n", fd, errno);
}
}
void InitListenSocket(int epollFd, short port)
{
int listenFd = socket(AF_INET, SOCK_STREAM, 0);
fcntl(listenFd, F_SETFL, O_NONBLOCK); // set non-blocking
printf("server listen fd=%d\n", listenFd);
EventSet(&g_Events[MAX_EVENTS], listenFd, AcceptConn, &g_Events[MAX_EVENTS]);
// add listen socket
EventAdd(epollFd, EPOLLIN, &g_Events[MAX_EVENTS]);
// bind & listen
sockaddr_in sin;
bzero(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(port);
bind(listenFd, (const sockaddr*)&sin, sizeof(sin));
listen(listenFd, 5);
}
int main(int argc, char **argv)
{
unsigned short port = 12345; // default port
if(argc == 2){
port = atoi(argv[1]);
}
// create epoll
g_epollFd = epoll_create(MAX_EVENTS);
if(g_epollFd <= 0) printf("create epoll failed.%d\n", g_epollFd);
// create & bind listen socket, and add to epoll, set non-blocking
InitListenSocket(g_epollFd, port);
// event loop
struct epoll_event events[MAX_EVENTS];
printf("server running:port[%d]\n", port);
int checkPos = 0;
while(1){
// a simple timeout check here, every time 100, better to use a mini-heap, and add timer event
long now = time(NULL);
for(int i = 0; i < 100; i++, checkPos++) // doesn't check listen fd
{
if(checkPos == MAX_EVENTS) checkPos = 0; // recycle
if(g_Events[checkPos].status != 1) continue;
long duration = now - g_Events[checkPos].last_active;
if(duration >= 60) // 60s timeout
{
close(g_Events[checkPos].fd);
printf("[fd=%d] timeout[%d--%d].\n", g_Events[checkPos].fd, g_Events[checkPos].last_active, now);
EventDel(g_epollFd, &g_Events[checkPos]);
}
}
// wait for events to happen
int fds = epoll_wait(g_epollFd, events, MAX_EVENTS, 1000);
if(fds < 0){
printf("epoll_wait error, exit\n");
break;
}
for(int i = 0; i < fds; i++){
myevent_s ev = (struct myevent_s)events[i].data.ptr;
if((events[i].events&EPOLLIN)&&(ev->events&EPOLLIN)) // read event
{
ev->call_back(ev->fd, events[i].events, ev->arg);
}
if((events[i].events&EPOLLOUT)&&(ev->events&EPOLLOUT)) // write event
{
ev->call_back(ev->fd, events[i].events, ev->arg);
}
}
}
// free resource
return 0;
}

你可能感兴趣的:(网络)