决策树Decision Tree

决策树是一种有监督机器学习算法,可用于解决分类/回归问题,主要用于分类。决策树的算法主要有ID3算法、C4.5、CART三种。这些算法都是为了找到最合适的特征作为分裂属性,不断迭代直到找到整个决策树。

ID3算法:信息增益最大化。用信息增益来判断当前节点应该选用哪个特征来构建决策树,信息增益越大,越适合用来分类。

熵代表了事件的不确定性,熵越大,不确定性越大。ID3算法为计算每一个特征Y对数据集X的信息增益,信息增益最大值对应的特征作为分裂属性

随机变量X的熵表示为:表示X的不确定性

H(X)=-\sum_{i=1}^np_ilogp_i

多个变量的联合熵:

H(X,Y)=-\sum_{i=1}^np(x_i,y_i)log(x_i,y_i)

根据联合熵的公式可以得到条件熵:表示已知Y后X的不确定性,y_i表示特征Y中的不同取值情况(比如Y表示天气特征,y_i为阴天、晴天、雨天等)。

H(X|Y)=-\sum_{i=1}^np(x_i,y_i)log(x_i|y_i)=\sum_{j=1}^np(y_i)H(X|y_i)

则信息增益表示为:表示已知Y后X的不确定性减少的程度

I(X,Y)=H(X)-H(X|Y)

由于取值比较多的特征比取值少的特征信息增益大(比如成绩有ABCD四种,而出勤只有积极和不积极两种,成绩的信息增益会比较大),所以ID3算法倾向于选择取值多的特征作为分裂属性,C4.5可以解决这个问题。

C4.5:信息增益率。X为数据集,Y为某一特征。

I_R(X,Y)=\frac{I(X,Y)}{H(Y)}

CART(classfication and regression):基尼系数。为了避免过多的对数运算,CART采用基尼系数代替信息增益比,基尼系数代表模型的不纯度,基尼系数越小,特征越好。

样本X分为K类,基尼系数计算如下:p_1+p_2+...+p_k=1N_k为X中k类的数目。

Gini(X)=\sum_{k=1}^Kp_k(1-p_k)=1-\sum_{k=1}^Kp_k^2=1-\sum_{k=1}^K(\frac{|N_k|}{|X|})^2

在决策树中基尼系数计算过程如下:表示根据Y将X分成了n个部分。

Gini(X,Y)=\frac{|X_1|}{|X|}Gini(X_1)+\frac{|X_2|}{|X|}Gini(X_2)+...+\frac{|X_n|}{|X|}Gini(X_n)

决策树停止分裂的条件:节点数小于某个指定值时;熵或基尼系数小于设定阈值;决策树深度达到设定的最大深度;所有特征使用完毕。

ID3和CART存在偏向细小分割,导致决策树过于复杂可能出现过拟合,需要进行优化,优化方法主要有剪枝和组合树。

随机森林:随机森林集成了多棵决策树,每棵决策树有一个分类结果,将投票次数最多的类别作为最终输出。随机森林可以处理大量的输入变数,可以产生高准确度的分类器。

随机森林算法步骤:

1)假设训练集的大小为N,对每棵树,有放回地随机抽取N个样本(包括可能重复的样本)

2)假设每个样本的特征为M,随机地从M中抽取m个特征,每次树进行分裂时,从这m个特征中选取最优的特征

3)对每棵决策树选定样本和特征后,使用CART进行计算,不剪枝

4)得到决策树后,对每棵树的输出进行投票,投票最多的类作为随机森林的决策。

python的sklearn实现分类和回归:

#决策树用于分类
import numpy as np
from sklearn import tree
from sklearn import datasets
from sklearn.model_selection import cross_val_score
from pydotplus.graphviz import graph_from_dot_data
import matplotlib.pyplot as plt
iris=datasets.load_iris()
X=iris.data
y=iris.target
clf=tree.DecisionTreeClassifier(max_depth=4,criterion='gini',random_state=1)#criterion='gini'/'entropy'
clf.fit(X,y)
# score=cross_val_score(clf,X,y,cv=10)
# acc=score.mean()
# print(acc)

dot_data=tree.export_graphviz(clf,filled=True,class_names=iris.target_names,feature_names=iris.feature_names,out_file=None)
graph=graph_from_dot_data(dot_data)
graph.write_png('tree.png')

决策树Decision Tree_第1张图片

 

#回归
from sklearn import tree
from sklearn import datasets
boston=datasets.load_boston()
data=boston.data[:,12]
y=boston.target
sort_idx=data.flatten().argsort()
X=data[sort_idx].reshape(-1,1)
y=y[sort_idx]

clf=tree.DecisionTreeRegressor(criterion='mse',max_depth=3)
clf.fit(X,y)

y_pre=clf.predict(X)
plt.figure(figsize=(10,5))
plt.scatter(X,y,c='steelblue',edgecolor='white',s=70)
plt.plot(X,y_pre,color='r',linewidth=2)
plt.legend(['depth=3',])
plt.show()

决策树Decision Tree_第2张图片

from math import log
import operator
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
def creatDataSet():
    dataSet=[[0, 0, 0, 0, 'no'],
             [0, 0, 0, 1, 'no'],
             [0, 1, 0, 1, 'yes'],
             [0, 1, 1, 0, 'yes'],
             [0, 0, 0, 0, 'no'],
             [1, 0, 0, 0, 'no'],
             [1, 0, 0, 1, 'no'],
             [1, 1, 1, 1, 'yes'],
             [1, 0, 1, 2, 'yes'],
             [1, 0, 1, 2, 'yes'],
             [2, 0, 1, 2, 'yes'],
             [2, 0, 1, 1, 'yes'],
             [2, 1, 0, 2, 'yes'],
             [2, 0, 0, 0, 'no']]
    labels=['年龄','有工作','有自己的房子','信贷情况']
    return dataSet,labels

def calcShannonEnt(dataSet):
    numEntries=len(dataSet)
    labelcounts={}
    for featVec in dataSet:
        currentLabel=featVec[-1]
        if currentLabel not in labelcounts.keys():
            labelcounts[currentLabel]=0
        labelcounts[currentLabel]+=1
    shannonEnt=0.0
    for key in labelcounts:
        prob=float(labelcounts[key])/numEntries
        shannonEnt-=prob*log(prob,2)
    return shannonEnt

def splitDataSet(dataSet,axis,value):
    retDataSet=[]
    for featVec in dataSet:
        if featVec[axis]==value:
            reduceFeatVec=featVec[:axis]
            reduceFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reduceFeatVec)
    return retDataSet
def chooseBestFeatureToSplit(dataSet):
    numFeatures=len(dataSet[0])-1
    baseEntropy=calcShannonEnt(dataSet)
    bestInfoGain=0.0
    bestFeature=-1
    for i in range(numFeatures):
        featList=[example[i] for example in dataSet]
        uniqueVals=set(featList)
        newEntropy=0.0
        for value in uniqueVals:
            subDataSet=splitDataSet(dataSet,i,value)
            prob=len(subDataSet)/float(len(dataSet))
            newEntropy+=prob*calcShannonEnt((subDataSet))
        infoGain=baseEntropy-newEntropy
        print("第%d个特征的增益为:%.3f"%(i,infoGain))
        if (infoGain>bestInfoGain):
            bestInfoGain=infoGain
            bestFeature=i
    return bestFeature

def majortyCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote]=0
            classCount[vote]+=1
        sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
        return sortedClassCount[0][0]
def createTree(dataSet,labels,featLabels):
    classList=[example[-1] for example in dataSet]
    if classList.count(classList[0])==len(classList):
        return classList[0]
    if len(dataSet[0])==1:
        return majortyCnt(classList)
    bestFeat=chooseBestFeatureToSplit(dataSet)
    bestFeatLabel=labels[bestFeat]
    featLabels.append(bestFeatLabel)
    myTree={bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues=[example[bestFeat] for example in dataSet]
    uniqueVals=set(featValues)
    for value in uniqueVals:
        myTree[bestFeatLabel][value]=createTree(splitDataSet(dataSet,bestFeat,value),labels,featLabels)
    return myTree

def getNumLeafs(myTree):
    numLeafs=0
    firstStr=next(iter(myTree))
    secondDict=myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            numLeafs+=getNumLeafs(secondDict[key])
        else:
            numLeafs+=1
    return numLeafs
def getTreeDepth(mTree):
    maxDepth=0
    firstStr=next(iter(myTree))
    secondDict=myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dic':
            thisDepth=1+getTreeDepth(secondDic[key])
        else:
            thisDepth=1
        if thisDepth>maxDepth:
            maxDepth=thisDepth
    return maxDepth
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    arrow_args = dict(arrowstyle="<-")                                  
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)        
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',    
        xytext=centerPt, textcoords='axes fraction',
        va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, FontProperties=font)

def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]                                            
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

def plotTree(myTree, parentPt, nodeTxt):
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")                                        
    leafNode = dict(boxstyle="round4", fc="0.8")                                            
    numLeafs = getNumLeafs(myTree)                                                          
    depth = getTreeDepth(myTree)                                                            
    firstStr = next(iter(myTree))                                                            
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)    
    plotMidText(cntrPt, parentPt, nodeTxt)                                                    
    plotNode(firstStr, cntrPt, parentPt, decisionNode)                                      
    secondDict = myTree[firstStr]                                                            
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD                                        
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':                                          
            plotTree(secondDict[key],cntrPt,str(key))                                        
        else:                                                                                
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')#创建fig
    fig.clf()#清空fig
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0
    plotTree(inTree, (0.5,1.0), '')
    plt.show()
def classify(inputTree,fratLabels,testVec):
    firstStr=next(iter(inputTree))
    secondDict=inputTree[firstStr]
    featIndex=featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex]==key:
            if type(secondDict[key]).__name__=='dict':
                classLabel=classify(secondDict[key],fratLabels,testVec)
            else:
                classLabel=secondDict[key]
    return classLabel
if __name__=='__main__':
    dataSet,labels=creatDataSet()
    featLabels=[]
    myTree=createTree(dataSet,labels,featLabels)
    print(myTree)
    createPlot(myTree)
    testVec=[0,1]
    result=classify(myTree,featLabels,testVec)
    print(result)

算法实现原理参考:https://blog.csdn.net/jiaoyangwm/article/details/79525237

你可能感兴趣的:(决策树Decision Tree)