原问题链接:
http://stackoverflow.com/questions/33610685/in-tensorflow-what-is-the-difference-between-session-run-and-tensor-eval
问题:
tensorflow有两种方式:Session.run
和 Tensor.eval
,这两者的区别在哪?
答:
如果你有一个Tensor
t,在使用t.eval()
时,等价于:
tf.get_default_session().run(t)
.
举例:
t = tf.constant(42.0)
sess = tf.Session()
with sess.as_default(): # or `with sess:` to close on exit
assert sess is tf.get_default_session()
assert t.eval() == sess.run(t)
这其中最主要的区别就在于你可以使用sess.run()
在同一步获取多个tensor中的值,
例如:
t = tf.constant(42.0)
u = tf.constant(37.0)
tu = tf.mul(t, u)
ut = tf.mul(u, t)
with sess.as_default():
tu.eval() # runs one step
ut.eval() # runs one step
sess.run([tu, ut]) # evaluates both tensors in a single step
注意到:每次使用 eval
和 run
时,都会执行整个计算图,为了获取计算的结果,将它分配给tf.Variable
,然后获取。
Question:
TensorFlow has two ways to evaluate part of graph: Session.run
on a list of variables and Tensor.eval
. Is there a difference between these two?
Answer:
If you have a Tensor
t, calling t.eval()
is equivalent to calling tf.get_default_session().run(t)
.
You can make a session the default as follows:
t = tf.constant(42.0)
sess = tf.Session()
with sess.as_default(): # or `with sess:` to close on exit
assert sess is tf.get_default_session()
assert t.eval() == sess.run(t)
The most important difference is that you can use sess.run()
to fetch the values of many tensors in the same step:
t = tf.constant(42.0)
u = tf.constant(37.0)
tu = tf.mul(t, u)
ut = tf.mul(u, t)
with sess.as_default():
tu.eval() # runs one step
ut.eval() # runs one step
sess.run([tu, ut]) # evaluates both tensors in a single step
Note that each call to eval
and run
will execute the whole graph from scratch. To cache the result of a computation, assign it to a tf.Variable
.