JDK1.8中Stream流API的使用

Java8中有两大最为重要的改变。第一个是 Lambda 表达式;另外一个则是 Stream API。

Stream API ( java.util.stream) 把真正的函数式编程风格引入到Java中。这是目前为止对Java类库最好的补充,因为Stream API可以极大提高Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。

Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。 使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。简言之,Stream API 提供了一种高效且易于使用的处理数据的方式。

Stream是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。“集合讲的是数据,负责存储数据,Stream流讲的是计算,负责处理数据!”

注意:

①Stream 自己不会存储元素。

②Stream 不会改变源对象。每次处理都会返回一个持有结果的新Stream。

③Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。

④每一个Stream对象只能被使用一次

Stream 的操作三个步骤:

1- 创建 Stream:通过一个数据源(如:集合、数组),获取一个流

2- 中间操作:中间操作是个操作链,对数据源的数据进行n次处理,但是在终结操作前,并不会真正执行。

3- 终止操作:一旦执行终止操作,就执行中间操作链,最终产生结果并结束Stream。

JDK1.8中Stream流API的使用_第1张图片

 

创建Stream

1、创建 Stream方式一:通过集合

Java8 中的 Collection 接口被扩展,提供了两个获取流的方法:

  • public default Stream stream() : 返回一个顺序流

  • public default Stream parallelStream() : 返回一个并行流

2、创建 Stream方式二:通过数组

Java8 中的 Arrays 的静态方法 stream() 可以获取数组流:

  • public static Stream stream(T[] array): 返回一个流

重载形式,能够处理对应基本类型的数组:

  • public static IntStream stream(int[] array):返回一个整型数据流

  • public static LongStream stream(long[] array):返回一个长整型数据流

  • public static DoubleStream stream(double[] array):返回一个浮点型数据流

3、创建 Stream方式三:通过Stream的of()

可以调用Stream类静态方法 of(), 通过显示值创建一个流。它可以接收任意数量的参数。

  • public static Stream of(T... values) : 返回一个顺序流

4、创建 Stream方式四:创建无限流

可以使用静态方法 Stream.iterate() 和 Stream.generate(), 创建无限流。

  • public static Stream iterate(final T seed, final UnaryOperator f):返回一个无限流

  • public static Stream generate(Supplier s) :返回一个无限流

import java.util.Arrays;
import java.util.List;
import java.util.stream.IntStream;
import java.util.stream.Stream;

import org.junit.Test;

public class Test07StreamCreate {
	@Test
	public void test06(){
		/*
		 * Stream iterate(T seed, UnaryOperator f)  
		 * UnaryOperator接口,SAM接口,抽象方法:
		 * 
		 * UnaryOperator extends Function
		 * 		T apply(T t)
		 */
		Stream stream = Stream.iterate(1, num -> num+=2);
//		stream = stream.limit(10);
		stream.forEach(System.out::println);
	}
	
	@Test
	public void test05(){
		Stream stream = Stream.generate(Math::random);
		stream.forEach(System.out::println);
	}
	
	@Test
	public void test04(){
		Stream stream = Stream.of(1,2,3,4,5);
		stream.forEach(System.out::println);
	}
	
	@Test
	public void test03(){
		String[] arr = {"hello","world"};
		Stream stream = Arrays.stream(arr);
	}
	
	@Test
	public void test02(){
		int[] arr = {1,2,3,4,5};
		IntStream stream = Arrays.stream(arr);
	}
	
	@Test
	public void test01(){
		List list = Arrays.asList(1,2,3,4,5);
		
		//JDK1.8中,Collection系列集合增加了方法
		Stream stream = list.stream();
	}
}

 

中间操作

多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!而在终止操作时一次性全部处理,称为“惰性求值”。

方 法 描 述
filter(Predicate p) 接收 Lambda , 从流中排除某些元素
distinct() 筛选,通过流所生成元素的equals() 去除重复元素
limit(long maxSize) 截断流,使其元素不超过给定数量
skip(long n) 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补
peek(Consumer action) 接收Lambda,对流中的每个数据执行Lambda体操作
sorted() 产生一个新流,其中按自然顺序排序
sorted(Comparator com) 产生一个新流,其中按比较器顺序排序
map(Function f) 接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
mapToDouble(ToDoubleFunction f) 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 DoubleStream。
mapToInt(ToIntFunction f) 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 IntStream。
mapToLong(ToLongFunction f) 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 LongStream。
flatMap(Function f) 接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流

 

mport java.util.Arrays;
import java.util.stream.Stream;

import org.junit.Test;

public class Test08StreamMiddle {
	
	@Test
	public void test12(){
		String[] arr = {"hello","world","java"};
		Arrays.stream(arr)
			.flatMap(t -> Stream.of(t.split("|")))//Function接口抽象方法 R apply(T t)  现在的R是一个Stream
			.forEach(System.out::println);
	}
	
	
	@Test
	public void test11(){
		String[] arr = {"hello","world","java"};
		
		Arrays.stream(arr)
			.map(t->t.toUpperCase())
			.forEach(System.out::println);
	}
	
	@Test
	public void test10(){
		Stream.of(1,2,3,4,5)
			.map(t -> t+=1)//Function接口抽象方法 R apply(T t)
			.forEach(System.out::println);
	}
	
	@Test
	public void test09(){
		//希望能够找出前三个最大值,前三名最大的,不重复
		Stream.of(11,2,39,4,54,6,2,22,3,3,4,54,54)
			.distinct()
			.sorted((t1,t2) -> -Integer.compare(t1, t2))//Comparator接口  int compare(T t1, T t2)
			.limit(3)
			.forEach(System.out::println);
	}
	
	@Test
	public void test08(){
		long count = Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
			.distinct()
			.peek(System.out::println)  //Consumer接口的抽象方法  void accept(T t)
			.count();
		System.out.println("count="+count);
	}
	
	
	@Test
	public void test07(){
		Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
			.skip(5)
			.distinct()
			.filter(t -> t%3==0)
			.forEach(System.out::println);
	}

	@Test
	public void test06(){
		Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
			.skip(5)
			.forEach(System.out::println);
	}
	
	@Test
	public void test05(){
		Stream.of(1,2,2,3,3,4,4,5,2,3,4,5,6,7)
			.distinct()  //(1,2,3,4,5,6,7)
			.filter(t -> t%2!=0) //(1,3,5,7)
			.limit(3)
			.forEach(System.out::println);
	}
	
	
	@Test
	public void test04(){
		Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
			.limit(3)
			.forEach(System.out::println);
	}
	
	
	@Test
	public void test03(){
		Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
			.distinct()
			.forEach(System.out::println);
	}
	
	
	@Test
	public void test02(){
		Stream.of(1,2,3,4,5,6)
			.filter(t -> t%2==0)
			.forEach(System.out::println);
	}
	
	@Test
	public void test01(){
		//1、创建Stream
		Stream stream = Stream.of(1,2,3,4,5,6);
		
		//2、加工处理
		//过滤:filter(Predicate p)
		//把里面的偶数拿出来
		/*
		 * filter(Predicate p)
		 * Predicate是函数式接口,抽象方法:boolean test(T t)
		 */
		stream = stream.filter(t -> t%2==0);
		
		//3、终结操作:例如:遍历
		stream.forEach(System.out::println);
	}
}

终结操作

终端操作会从流的流水线生成结果。其结果可以是任何不是流的值,例如:List、Integer,甚至是 void。流进行了终止操作后,不能再次使用。

方法 描述
boolean allMatch(Predicate p) 检查是否匹配所有元素
boolean anyMatch(Predicate p) 检查是否至少匹配一个元素
boolean noneMatch(Predicate p) 检查是否没有匹配所有元素
Optional findFirst() 返回第一个元素
Optional findAny() 返回当前流中的任意元素
long count() 返回流中元素总数
Optional max(Comparator c) 返回流中最大值
Optional min(Comparator c) 返回流中最小值
void forEach(Consumer c) 迭代
T reduce(T iden, BinaryOperator b) 可以将流中元素反复结合起来,得到一个值。返回 T
U reduce(BinaryOperator b) 可以将流中元素反复结合起来,得到一个值。返回 Optional
R collect(Collector c) 将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法

Collector 接口中方法的实现决定了如何对流执行收集的操作(如收集到 List、Set、Map)。另外, Collectors 实用类提供了很多静态方法,可以方便地创建常见收集器实例。

public class Test09StreamEnding {
	
	@Test
	public void test14(){
		List list = Stream.of(1,2,4,5,7,8)
				.filter(t -> t%2==0)
				.collect(Collectors.toList());
		
		System.out.println(list);
	}
	
	
	@Test
	public void test13(){
		Optional max = Stream.of(1,2,4,5,7,8)
			 .reduce((t1,t2) -> t1>t2?t1:t2);//BinaryOperator接口   T apply(T t1, T t2)
		System.out.println(max);
	}
	
	@Test
	public void test12(){
		Integer reduce = Stream.of(1,2,4,5,7,8)
			 .reduce(0, (t1,t2) -> t1+t2);//BinaryOperator接口   T apply(T t1, T t2)
		System.out.println(reduce);
	}
	
	@Test
	public void test11(){
		Optional max = Stream.of(1,2,4,5,7,8)
				.max((t1,t2) -> Integer.compare(t1, t2));
		System.out.println(max);
	}
	
	@Test
	public void test10(){
		Optional opt = Stream.of(1,2,4,5,7,8)
				.filter(t -> t%3==0)
				.findFirst();
		System.out.println(opt);
	}
	
	@Test
	public void test09(){
		Optional opt = Stream.of(1,2,3,4,5,7,9)
				.filter(t -> t%3==0)
				.findFirst();
		System.out.println(opt);
	}
	
	@Test
	public void test08(){
		Optional opt = Stream.of(1,3,5,7,9).findFirst();
		System.out.println(opt);
	}
	
	@Test
	public void test04(){
		boolean result = Stream.of(1,3,5,7,9)
			.anyMatch(t -> t%2==0);
		System.out.println(result);
	}
	
	
	@Test
	public void test03(){
		boolean result = Stream.of(1,3,5,7,9)
			.allMatch(t -> t%2!=0);
		System.out.println(result);
	}
	
	@Test
	public void test02(){
		long count = Stream.of(1,2,3,4,5)
				.count();
		System.out.println("count = " + count);
	}
	
	@Test
	public void test01(){
		Stream.of(1,2,3,4,5)
				.forEach(System.out::println);
	}
}

 

你可能感兴趣的:(java,java8新特新)