poll和epoll的使用应该不用再多说了。当fd很多时,使用epoll比poll效率更高。我们通过内核源码分析来看看到底是为什么。
poll剖析poll系统调用:
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
对应的实现代码为:
[fs/select.c -->sys_poll] asmlinkage long sys_poll(struct pollfd __user * ufds, unsigned int nfds, long timeout){ struct poll_wqueues table;int fdcount, err; unsigned int i;struct poll_list *head;struct poll_list *walk;/* Do a sanity check on nfds ... */ /* 用户给的nfds数不可以超过一个struct file结构支持的最大fd数(默认是256)*/ if (nfds > current->files->max_fdset && nfds > OPEN_MAX) return -EINVAL; if (timeout) { /* Careful about overflow in the intermediate values */ if ((unsigned long) timeout < MAX_SCHEDULE_TIMEOUT / HZ)timeout = (unsigned long)(timeout*HZ+999)/1000+1; else /* Negative or overflow */ timeout = MAX_SCHEDULE_TIMEOUT; } poll_initwait(&table);
其中poll_initwait较为关键,从字面上看,应该是初始化变量table,注意此处table在整个执行poll的过程中是很关键的变量。而struct poll_table其实就只包含了一个函数指针:
[fs/poll.h] /* * structures and helpers for f_op->poll implementations */ typedef void (*poll_queue_proc)(struct file *, wait_queue_head_t *, structpoll_table_struct *); typedef struct poll_table_struct {poll_queue_proc qproc; } poll_table;
现在我们来看看poll_initwait到底在做些什么
[fs/select.c] void __pollwait(struct file *filp, wait_queue_head_t *wait_address, poll_table *p); void poll_initwait(struct poll_wqueues *pwq) { &(pwq->pt)->qproc = __pollwait; /*此行已经被我“翻译”了,方便观看*/pwq->error = 0; pwq->table = NULL; }
需要C/C++ Linux服务器架构师学习资料加q裙3223296726(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享
很明显,poll_initwait的主要动作就是把table变量的成员poll_table对应的回调函数置__pollwait。这个__pollwait不仅是poll系统调用需要,select系统调用也一样是用这个__pollwait,说白了,这是个操作系统的异步操作的“御用”回调函数。当然了,epoll没有用这个,它另外新增了一个回调函数,以达到其高效运转的目的,这是后话,暂且不表。我们先不讨论__pollwait的具体实现,还是继续看sys_poll:
[fs/select.c -->sys_poll] head = NULL; walk = NULL; i = nfds; err = -ENOMEM;while(i!=0) { struct poll_list *pp; pp = kmalloc(sizeof(struct poll_list)+ sizeof(struct pollfd)* (i>POLLFD_PER_PAGE?POLLFD_PER_PAGE:i), GFP_KERNEL); if(pp==NULL) goto out_fds; pp->next=NULL;pp->len = (i>POLLFD_PER_PAGE?POLLFD_PER_PAGE:i); if (head == NULL) head = pp; else walk->next = pp;walk = pp;if (copy_from_user(pp->entries, ufds + nfds-i, sizeof(struct pollfd)*pp->len)) { err = -EFAULT; goto out_fds; } i -= pp->len; }fdcount = do_poll(nfds, head, &table, timeout);
这一大堆代码就是建立一个链表,每个链表的节点是一个page大小(通常是4k),这链表节点由一个指向struct poll_list的指针掌控,而众多的struct pollfd就通过struct_list的entries成员访问。上面的循环就是把用户态的struct pollfd拷进这些entries里。通常用户程序的poll调用就监控几个fd,所以上面这个链表通常也就只需要一个节点,即操作系统的一页。但是,当用户传入的fd很多时,由于poll系统调用每次都要把所有struct pollfd拷进内核,所以参数传递和页分配此时就成了poll系统调用的性能瓶颈。最后一句do_poll,我们跟进去:
[fs/select.c-->sys_poll()-->do_poll()] static void do_pollfd(unsigned int num, struct pollfd * fdpage, poll_table ** pwait, int *count) { int i; for (i = 0; i < num; i++) { int fd; unsigned int mask; struct pollfd *fdp; mask = 0; fdp = fdpage+i; fd = fdp->fd; if (fd >= 0) { struct file * file = fget(fd); mask = POLLNVAL; if (file != NULL) { mask = DEFAULT_POLLMASK; if (file->f_op && file->f_op->poll) mask = file->f_op->poll(file, *pwait); mask &= fdp->events | POLLERR | POLLHUP;fput(file); } if (mask) { *pwait = NULL; (*count)++; }} fdp->revents = mask; } } static int do_poll(unsigned int nfds, struct poll_list *list, struct poll_wqueues *wait, long timeout) { int count = 0; poll_table* pt = &wait->pt; if (!timeout) pt = NULL; for (;;) { struct poll_list *walk;set_current_state(TASK_INTERRUPTIBLE); walk = list; while(walk != NULL) { do_pollfd( walk->len, walk->entries, &pt, &count);walk = walk->next;} pt = NULL;if (count || !timeout || signal_pending(current))break;count = wait->error; if (count) break;timeout = schedule_timeout(timeout); /* 让current挂起,别的进程跑,timeout到了以后再回来运行current*/} __set_current_state(TASK_RUNNING);return count; }
注意set_current_state和signal_pending,它们两句保障了当用户程序在调用poll后挂起时,发信号可以让程序迅速推出poll调用,而通常的系统调用是不会被信号打断的。
纵览do_poll函数,主要是在循环内等待,直到count大于0才跳出循环,而count主要是靠do_pollfd函数处理。注意这段代码:
while(walk != NULL) { do_pollfd( walk->len, walk->entries, &pt, &count); walk = walk->next; }
当用户传入的fd很多时(比如1000个),对do_pollfd就会调用很多次,poll效率瓶颈的另一原因就在这里。do_pollfd就是针对每个传进来的fd,调用它们各自对应的poll函数,简化一下调用过程,如下:
struct file* file = fget(fd);file->f_op->poll(file, &(table->pt));
如果fd对应的是某个socket,do_pollfd调用的就是网络设备驱动实现的poll;如果fd对应的是某个ext3文件系统上的一个打开文件,那do_pollfd调用的就是ext3文件系统驱动实现的poll。一句话,这个file->f_op->poll是设备驱动程序实现的,那设备驱动程序的poll实现通常又是什么样子呢?其实,设备驱动程序的标准实现是:调用poll_wait,即以设备自己的等待队列为参数(通常设备都有自己的等待队列,不然一个不支持异步操作的设备会让人很郁闷)调用struct poll_table的回调函数。作为驱动程序的代表,我们看看socket在使用tcp时的代码:
[net/ipv4/tcp.c-->tcp_poll]unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait){ unsigned int mask; struct sock *sk = sock->sk;struct tcp_opt *tp = tcp_sk(sk); poll_wait(file, sk->sk_sleep, wait);
代码就看这些,剩下的无非就是判断状态、返回状态值,tcp_poll的核心实现就是poll_wait,而
poll_wait就是调用struct poll_table对应的回调函数,那poll系统调用对应的回调函数就是__poll_wait,所以这里几乎就可以把tcp_poll理解为一个语句:
__poll_wait(file, sk->sk_sleep, wait);
由此也可以看出,每个socket自己都带有一个等待队列sk_sleep,所以上面我们所说的“设备的等待队列”其实不止一个。这时候我们再看看__poll_wait的实现:
[fs/select.c-->__poll_wait()] void __pollwait(struct file *filp, wait_queue_head_t *wait_address, poll_table *_p){ struct poll_wqueues *p = container_of(_p, struct poll_wqueues, pt); struct poll_table_page *table = p->table; if (!table || POLL_TABLE_FULL(table)) { struct poll_table_page *new_table; new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL); if (!new_table) { p->error = -ENOMEM; __set_current_state(TASK_RUNNING); return;} new_table->entry = new_table->entries; new_table->next = table; p->table = new_table; table = new_table; } /* Add a new entry */ { struct poll_table_entry * entry = table->entry; table->entry = entry+1;get_file(filp); entry->filp = filp;entry->wait_address = wait_address; init_waitqueue_entry(&entry->wait, current); add_wait_queue(wait_address,&entry->wait); }}
__poll_wait的作用就是创建了上图所示的数据结构(一次__poll_wait即一次设备poll调用只创建一个poll_table_entry),并通过struct poll_table_entry的wait成员,把current挂在了设备的等待队列
上,此处的等待队列是wait_address,对应tcp_poll里的sk->sk_sleep。现在我们可以回顾一下poll系统调用的原理了:先注册回调函数__poll_wait,再初始化table变量(类型为struct poll_wqueues),接着拷贝用户传入的struct pollfd(其实主要是fd),然后轮流调用所有fd对应的poll(把current挂到各个fd对应的设备等待队列上)。在设备收到一条消息(网络设备)或填写完文件数据(磁盘设备)后,会唤醒设备等待队列上的进程,这时current便被唤醒了。current醒来后离开sys_poll的操作相对简单,这里就不逐行分析了。
epoll
通过上面的分析,poll运行效率的两个瓶颈已经找出,现在的问题是怎么改进。首先,每次poll都要把1000个fd 拷入内核,太不科学了,内核干嘛不自己保存已经拷入的fd呢?答对了,epoll就是自己保存拷入的fd,它的API就已经说明了这一点——不是 epoll_wait的时候才传入fd,而是通过epoll_ctl把所有fd传入内核再一起"wait",这就省掉了不必要的重复拷贝。其次,在 epoll_wait时,也不是把current轮流的加入fd对应的设备等待队列,而是在设备等待队列醒来时调用一个回调函数(当然,这就需要“唤醒回调”机制),把产生事件的fd归入一个链表,然后返回这个链表上的fd。
epoll剖析
epoll是个module,所以先看看module的入口eventpoll_init
[fs/eventpoll.c-->evetpoll_init()] static int __init eventpoll_init(void) { int error; init_MUTEX(&epsem); /* Initialize the structure used to perform safe poll wait head wake ups */ ep_poll_safewake_init(&psw); /* Allocates slab cache used to allocate "struct epitem" items */ epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL); /* Allocates slab cache used to allocate "struct eppoll_entry" */ pwq_cache = kmem_cache_create("eventpoll_pwq", sizeof(struct eppoll_entry), 0, EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL); /* * Register the virtual file system that will be the source of inodes * for the eventpoll files */ error = register_filesystem(&eventpoll_fs_type); if (error)goto epanic;/* Mount the above commented virtual file system */ eventpoll_mnt = kern_mount(&eventpoll_fs_type); error = PTR_ERR(eventpoll_mnt); if (IS_ERR(eventpoll_mnt))goto epanic;DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n", current));return 0; epanic: panic("eventpoll_init() failed\n"); }
很有趣,这个module在初始化时注册了一个新的文件系统,叫"eventpollfs"(在eventpoll_fs_type结构里),然后挂载此文件系统。另外创建两个内核cache(在内核编程中,如果需要频繁分配小块内存,应该创建kmem_cahe来做“内存池”),分别用于存放struct epitem和eppoll_entry。如果以后要开发新的文件系统,可以参考这段代码。现在想想epoll_create为什么会返回一个新的fd?因为它就是在这个叫做"eventpollfs"的文件系统里创建了一个新文件!如下:
[fs/eventpoll.c-->sys_epoll_create()] asmlinkage long sys_epoll_create(int size) { int error, fd; struct inode *inode; struct file *file; DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n", current, size)); /* Sanity check on the size parameter */ error = -EINVAL; if (size <= 0) goto eexit_1; /* * Creates all the items needed to setup an eventpoll file. That is,* a file structure, and inode and a free file descriptor. */ error = ep_getfd(&fd, &inode, &file); if (error)goto eexit_1;/* Setup the file internal data structure ( "struct eventpoll" ) */ error = ep_file_init(file); if (error) goto eexit_2;
函数很简单,其中ep_getfd看上去是“get”,其实在第一次调用epoll_create时,它是要创建新inode、新的file、新的fd。而ep_file_init则要创建一个struct eventpoll结构,并把它放入file-
>private_data,注意,这个private_data后面还要用到的。看到这里,也许有人要问了,为什么epoll的开发者不做一个内核的超级大map把用户要创建的epoll句柄存起来,在epoll_create时返回一个指针?那似乎很直观呀。但是,仔细看看,linux的系统调用有多少是返回指针的?你会发现几乎没有!(特此强调,malloc不是系统调用,malloc调用的brk才是)因为linux做为unix的最杰出的继承人,它遵循了unix的一个巨大优点——一切皆文件,输入输出是文件、socket也
是文件,一切皆文件意味着使用这个操作系统的程序可以非常简单,因为一切都是文件操作而已!(unix还不是完全做到,plan 9才算)。而且使用文件系统有个好处:epoll_create返回的是一个fd,而不是该死的指针,指针如果指错了,你简直没办法判断,而fd则可以通过current->files->fd_array[]找到其真伪。epoll_create好了,该epoll_ctl了,我们略去判断性的代码:
[fs/eventpoll.c-->sys_epoll_ctl()] asmlinkage long sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event) { int error; struct file *file, *tfile; struct eventpoll *ep; struct epitem *epi; struct epoll_event epds;.... epi = ep_find(ep, tfile, fd);error = -EINVAL;switch (op) {case EPOLL_CTL_ADD:if (!epi) { epds.events |= POLLERR | POLLHUP; error = ep_insert(ep, &epds, tfile, fd); } else error = -EEXIST; break; case EPOLL_CTL_DEL: if (epi) error = ep_remove(ep, epi);elseerror = -ENOENT; break;case EPOLL_CTL_MOD: if (epi) { epds.events |= POLLERR | POLLHUP; error = ep_modify(ep, epi, &epds); } elseerror = -ENOENT; break;}
原来就是在一个大的结构(现在先不管是什么大结构)里先ep_find,如果找到了struct epitem而用户操作是ADD,那么返回-EEXIST;如果是DEL,则ep_remove。如果找不到struct epitem而用户操作是ADD,就ep_insert创建并插入一个。很直白。那这个“大结构”是什么呢?看ep_find的调用方式,ep参数应该是指向这个“大结构”的指针,再看ep = file->private_data,我们才明白,原来这个“大结构”就是那个在epoll_create时创建的struct eventpoll,具体再看看ep_find的实现,发现原来是struct eventpoll的rbr成员(struct rb_root),原来这是一个红黑树的根!而红黑树上挂的都是struct epitem。现在清楚了,一个新创建的epoll文件带有一个struct eventpoll结构,这个结构上再挂一个红黑树,而这个红黑树就是每次epoll_ctl时fd存放的地方!现在数据结构都已经清楚了,我们来看最核心的:
[fs/eventpoll.c-->sys_epoll_wait()] asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events, int maxevents, int timeout) { int error; struct file *file; struct eventpoll *ep; DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",current, epfd, events, maxevents, timeout)); /* The maximum number of event must be greater than zero */ if (maxevents <= 0) return -EINVAL;/* Verify that the area passed by the user is writeable */ if ((error = verify_area(VERIFY_WRITE, events, maxevents * sizeof(structepoll_event))))goto eexit_1; /* Get the "struct file *" for the eventpoll file */ error = -EBADF; file = fget(epfd); if (!file) goto eexit_1; /* * We have to check that the file structure underneath the fd * the user passed to us _is_ an eventpoll file. */error = -EINVAL; if (!IS_FILE_EPOLL(file)) goto eexit_2; /* * At this point it is safe to assume that the "private_data" contains * our own data structure. */ ep = file->private_data;/* Time to fish for events ... */ error = ep_poll(ep, events, maxevents, timeout); eexit_2: fput(file);eexit_1:DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) =%d\n", current, epfd, events, maxevents, timeout, error)); return error; }
故伎重演,从file->private_data中拿到struct eventpoll,再调用ep_poll
[fs/eventpoll.c-->sys_epoll_wait()->ep_poll()] static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, int maxevents, long timeout) {int res, eavail;unsigned long flags; long jtimeout; wait_queue_t wait; /* * Calculate the timeout by checking for the "infinite" value ( -1 ) * and the overflow condition. The passed timeout is in milliseconds, * that why (t * HZ) / 1000. */ jtimeout = timeout == -1 || timeout > (MAX_SCHEDULE_TIMEOUT - 1000) / HZ ? MAX_SCHEDULE_TIMEOUT: (timeout * HZ + 999) / 1000;retry: write_lock_irqsave(&ep->lock, flags); res = 0; if (list_empty(&ep->rdllist)) { /* * We don't have any available event to return to the caller. * We need to sleep here, and we will be wake up by * ep_poll_callback() when events will become available.*/ init_waitqueue_entry(&wait, current); add_wait_queue(&ep->wq, &wait); for (;;) { /* * We don't want to sleep if the ep_poll_callback() sends us * a wakeup in between. That's why we set the task state * to TASK_INTERRUPTIBLE before doing the checks. */ set_current_state(TASK_INTERRUPTIBLE); if (!list_empty(&ep->rdllist) || !jtimeout) break; if (signal_pending(current)) { res = -EINTR; break; } write_unlock_irqrestore(&ep->lock, flags); jtimeout = schedule_timeout(jtimeout); write_lock_irqsave(&ep->lock, flags);} remove_wait_queue(&ep->wq, &wait); set_current_state(TASK_RUNNING);}
又是一个大循环,不过这个大循环比poll的那个好,因为仔细一看——它居然除了睡觉和判断ep->rdllist是否为空以外,啥也没做!什么也没做当然效率高了,但到底是谁来让ep->rdllist不为空呢?答案是ep_insert时设下的回调函数
[fs/eventpoll.c-->sys_epoll_ctl()-->ep_insert()] static int ep_insert(struct eventpoll *ep, struct epoll_event *event, struct file *tfile, int fd) { int error, revents, pwake = 0; unsigned long flags; struct epitem *epi;struct ep_pqueue epq; error = -ENOMEM; if (!(epi = EPI_MEM_ALLOC())) goto eexit_1; /* Item initialization follow here ... */EP_RB_INITNODE(&epi->rbn);INIT_LIST_HEAD(&epi->rdllink); INIT_LIST_HEAD(&epi->fllink); INIT_LIST_HEAD(&epi->txlink); INIT_LIST_HEAD(&epi->pwqlist); epi->ep = ep; EP_SET_FFD(&epi->ffd, tfile, fd); epi->event = *event; atomic_set(&epi->usecnt, 1);epi->nwait = 0; /* Initialize the poll table using the queue callback */ epq.epi = epi; init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);/** Attach the item to the poll hooks and get current event bits. * We can safely use the file* here because its usage count has * been increased by the caller of this function. */ revents = tfile->f_op->poll(tfile, &epq.pt);
我们注意init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);这一行,其实就是&(epq.pt)->qproc = ep_ptable_queue_proc;紧接着 tfile->f_op->poll(tfile, &epq.pt)其实就是调用被监控文件(epoll里叫“target file”)的poll方法,而这个poll其实就是调用poll_wait(还记得poll_wait吗?每个支持poll的设备驱动程序都要调用的),最后就是调用ep_ptable_queue_proc。这是比较难解的一个调用关系,因为不是语言级的直接调用。ep_insert还把struct epitem放到struct file里的f_ep_links连表里,以方便查找,struct epitem里的fllink就是担负这个使命的。
[fs/eventpoll.c-->ep_ptable_queue_proc()] static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,poll_table *pt) { struct epitem *epi = EP_ITEM_FROM_EPQUEUE(pt); struct eppoll_entry *pwq; if (epi->nwait >= 0 && (pwq = PWQ_MEM_ALLOC())) { init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); pwq->whead = whead; pwq->base = epi; add_wait_queue(whead, &pwq->wait);list_add_tail(&pwq->llink, &epi->pwqlist); epi->nwait++; } else { /* We have to signal that an error occurred */epi->nwait = -1; } }
上面的代码就是ep_insert中要做的最重要的事:创建struct eppoll_entry,设置其唤醒回调函数为
ep_poll_callback,然后加入设备等待队列(注意这里的whead就是上一章所说的每个设备驱动都要带的等待队列)。只有这样,当设备就绪,唤醒等待队列上的等待着时,ep_poll_callback就会被调用。每次调用poll系统调用,操作系统都要把current(当前进程)挂到fd对应的所有设备的等待队列上,可以想象,fd多到上千的时候,这样“挂”法很费事;而每次调用epoll_wait则没有这么罗嗦,epoll只在epoll_ctl时把current挂一遍(这第一遍是免不了的)并给每个fd一个命令“好了就调回调函数”,如果设备有事件了,通过回调函数,会把fd放入rdllist,而每次调用epoll_wait就只是收集rdllist里的fd就可以了——epoll巧妙的利用回调函数,实现了更高效的事件驱动模型。现在我们猜也能猜出来ep_poll_callback会干什么了——肯定是把红黑树上的收到event的epitem(代表每个fd)插入ep->rdllist中,这样,当epoll_wait返回时,rdllist里就都是就绪的fd了!
[fs/eventpoll.c-->ep_poll_callback()] static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) { int pwake = 0; unsigned long flags; struct epitem *epi = EP_ITEM_FROM_WAIT(wait); struct eventpoll *ep = epi->ep; DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%pep=%p\n", current, epi->file, epi, ep)); write_lock_irqsave(&ep->lock, flags); /* * If the event mask does not contain any poll(2) event, we consider the * descriptor to be disabled. This condition is likely the effect of the * EPOLLONESHOT bit that disables the descriptor when an event is received, * until the next EPOLL_CTL_MOD will be issued.*/ if (!(epi->event.events & ~EP_PRIVATE_BITS)) goto is_disabled; /* If this file is already in the ready list we exit soon */ if (EP_IS_LINKED(&epi->rdllink)) goto is_linked; list_add_tail(&epi->rdllink, &ep->rdllist);is_linked: /* * Wake up ( if active ) both the eventpoll wait list and the ->poll() * wait list. */ if (waitqueue_active(&ep->wq)) wake_up(&ep->wq); if (waitqueue_active(&ep->poll_wait)) pwake++; is_disabled: write_unlock_irqrestore(&ep->lock, flags); /* We have to call this outside the lock */if (pwake) ep_poll_safewake(&psw, &ep->poll_wait); return 1; }
真正重要的只有 list_add_tail(&epi->rdllink, &ep->rdllist);一句,就是把struct epitem放到struct eventpoll的rdllist中去。现在我们可以画出epoll的核心数据结构图了:
epoll独有的EPOLLET
EPOLLET是epoll系统调用独有的flag,ET就是Edge Trigger(边缘触发)的意思,具体含义和应用大家可google之。有了EPOLLET,重复的事件就不会总是出来打扰程序的判断,故而常被使用。那EPOLLET的原理是什么呢?epoll把fd都挂上一个回调函数,当fd对应的设备有消息时,就把fd放入rdllist链表,这样epoll_wait只要检查这个rdllist链表就可以知道哪些fd有事件了。我们看看ep_poll的最后几行代码:
[fs/eventpoll.c->ep_poll()] /* * Try to transfer events to user space. In case we get 0 events and * there's still timeout left over, we go trying again in search of * more luck. */if (!res && eavail && !(res = ep_events_transfer(ep, events, maxevents)) && jtimeout) goto retry; return res; }
把rdllist里的fd拷到用户空间,这个任务是ep_events_transfer做的:
[fs/eventpoll.c->ep_events_transfer()] static int ep_events_transfer(struct eventpoll *ep,struct epoll_event __user *events, int maxevents) { int eventcnt = 0; struct list_head txlist; INIT_LIST_HEAD(&txlist); /* * We need to lock this because we could be hit by * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL). */down_read(&ep->sem);/* Collect/extract ready items */ if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) {/* Build result set in userspace */eventcnt = ep_send_events(ep, &txlist, events);/* Reinject ready items into the ready list */ep_reinject_items(ep, &txlist); }up_read(&ep->sem); return eventcnt;}
代码很少,其中ep_collect_ready_items把rdllist里的fd挪到txlist里(挪完后rdllist就空了),接着
ep_send_events把txlist里的fd拷给用户空间,然后ep_reinject_items把一部分fd从txlist里“返还”给
rdllist以便下次还能从rdllist里发现它。其中ep_send_events的实现:
[fs/eventpoll.c->ep_send_events()] static int ep_send_events(struct eventpoll *ep, struct list_head *txlist, struct epoll_event __user *events) { int eventcnt = 0; unsigned int revents; struct list_head *lnk; struct epitem *epi; /* * We can loop without lock because this is a task private list. * The test done during the collection loop will guarantee us that * another task will not try to collect this file. Also, items * cannot vanish during the loop because we are holding "sem". */ list_for_each(lnk, txlist) { epi = list_entry(lnk, struct epitem, txlink); /* * Get the ready file event set. We can safely use the file * because we are holding the "sem" in read and this will * guarantee that both the file and the item will not vanish. */ revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); /* * Set the return event set for the current file descriptor. * Note that only the task task was successfully able to link * the item to its "txlist" will write this field. */ epi->revents = revents & epi->event.events; if (epi->revents) { if (__put_user(epi->revents, &events[eventcnt].events) || __put_user(epi->event.data, &events[eventcnt].data)) return -EFAULT; if (epi->event.events & EPOLLONESHOT) epi->event.events &= EP_PRIVATE_BITS; eventcnt++; } } return eventcnt;}
这个拷贝实现其实没什么可看的,但是请注意revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);这一行,这个poll很狡猾,它把第二个参数置为NULL来调用。我们先看一下设备驱动通常是怎么实现poll的:
static unsigned int scull_p_poll(struct file *filp, poll_table *wait){struct scull_pipe *dev = filp->private_data;unsigned int mask = 0;/** The buffer is circular; it is considered full* if "wp" is right behind "rp" and empty if the* two are equal.*/down(&dev->sem);poll_wait(filp, &dev->inq, wait);poll_wait(filp, &dev->outq, wait);if (dev->rp != dev->wp)mask |= POLLIN | POLLRDNORM; /* readable */if (spacefree(dev))mask |= POLLOUT | POLLWRNORM; /* writable */up(&dev->sem);return mask;}
上面这段代码摘自《linux设备驱动程序(第三版)》,绝对经典,设备先要把current(当前进程)挂在inq和outq两个队列上(这个“挂”操作是wait回调函数指针做的),然后等设备来唤醒,唤醒后就能通过mask拿到事件掩码了(注意那个mask参数,它就是负责拿事件掩码的)。那如果wait为NULL,poll_wait会做些什么呢?
[include/linux/poll.h->poll_wait] static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address,poll_table *p) { if (p && wait_address) p->qproc(filp, wait_address, p); }
如果poll_table为空,什么也不做。我们倒回ep_send_events,那句标红的poll,实际上就是“我不想休眠,我只想拿到事件掩码”的意思。然后再把拿到的事件掩码拷给用户空间。ep_send_events完成后,就轮到ep_reinject_items了:
[fs/eventpoll.c->ep_reinject_items] static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist) { int ricnt = 0, pwake = 0; unsigned long flags; struct epitem *epi; write_lock_irqsave(&ep->lock, flags); while (!list_empty(txlist)) { epi = list_entry(txlist->next, struct epitem, txlink);/* Unlink the current item from the transfer list */ EP_LIST_DEL(&epi->txlink);/** If the item is no more linked to the interest set, we don't * have to push it inside the ready list because the following * ep_release_epitem() is going to drop it. Also, if the current * item is set to have an Edge Triggered behaviour, we don't have * to push it back either. */ if (EP_RB_LINKED(&epi->rbn) && !(epi->event.events & EPOLLET) && (epi->revents & epi->event.events) && !EP_IS_LINKED(&epi->rdllink)) { list_add_tail(&epi->rdllink, &ep->rdllist);ricnt++; } } if (ricnt) { /** Wake up ( if active ) both the eventpoll wait list and the ->poll() * wait list. */ if (waitqueue_active(&ep->wq)) wake_up(&ep->wq); if (waitqueue_active(&ep->poll_wait)) pwake++; }write_unlock_irqrestore(&ep->lock, flags); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(&psw, &ep->poll_wait); }
ep_reinject_items把txlist里的一部分fd又放回rdllist,那么,是把哪一部分fd放回去呢?看上面if (EP_RB_LINKED(&epi->rbn) && !(epi->event.events & EPOLLET) &&这个判断——是哪些“没有标上EPOLLET”(标红代码)且“事件被关注”(标蓝代码)的fd被重新放回了rdllist。那么下次epoll_wait当然会又把rdllist里的fd拿来拷给用户了。举个例子。假设一个socket,只是connect,还没有收发数据,那么它的poll事件掩码总是有POLLOUT的(参见上面的驱动示例),每次调用epoll_wait总是返回POLLOUT事件(比较烦),因为它的fd就总是被放回rdllist;假如此时有人往这个socket里写了一大堆数据,造成socket塞住(不可写了),那么(epi->revents & epi->event.events) && !EP_IS_LINKED(&epi->rdllink)) {里的判断就不成立了(没有POLLOUT了),fd不会放回rdllist,epoll_wait将不会再返回用户POLLOUT事件。现在我们给这个socket加上EPOLLET,然后connect,没有收发数据,此时,if (EP_RB_LINKED(&epi->rbn) && !(epi->event.events & EPOLLET) &&判断又不成立了,所以epoll_wait只会返回一次POLLOUT通知给用户(因为此fd不会再回到rdllist了),接下来的epoll_wait都不会有任何事件通知了。