- 基于PyTorch的深度学习2——Numpy与Tensor
Wis4e
深度学习pytorchnumpy
Tensor自称为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便和高效。不过它们也有不同之处,最大的区别就是Numpy会把ndarray放在CPU中进行加速运算,而由Torch产生的Tensor会放在GPU中进行加速运算。1.创建创建Tensor的方法有很多,可以从列表或ndarray等类型进行构建,也可根据指定的形状构建。importtorch#根据list数
- 图像识别技术与应用课后总结(12)
一元钱面包
人工智能
全局平均池化(GlobalAveragePooling)1.导入库和设备配置importtorch.nnasnnimporttorch.nn.functionalasFdevice=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")-importtorch.nnasnn:导入PyTorch的神经网络模块,用于构建神经网络层。-imp
- PyTorch RuntimeError: 张量 a 的大小必须与张量 b 的大小在非单例维度上匹配
PzBlockchain
pytorch人工智能python机器学习-深度学习
在使用PyTorch进行深度学习模型开发时,经常会遇到各种错误和异常。其中一个常见的错误是RuntimeError。这篇文章将详细介绍其中一个特定的RuntimeError,即“Thesizeoftensoramustmatchthesizeoftensorbatnon-singletondimension”错误。我们将讨论这个错误的原因,并提供一些解决方案。错误信息解读:错误信息“Thesize
- 私有部署 ChatGLM3-6B
张申傲
langchain人工智能aigcchatgptai
1.在AutoDL平台上租赁GPUGPU型号:RTX4090PyTorch版本:2.5.1**(推荐使用2.0及以上的版本,以获得最佳的推理性能)**2.开启学术资源加速source/etc/network_turbo3.拉取模型代码gitclonehttps://github.com/THUDM/ChatGLM34.安装依赖cdChatGLM3pipinstall-rrequirements.t
- 深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用
@Mr_LiuYang
计算机视觉基础归一化正则化NormlizationBatchNormLayerNormInstanceNromGroupNorm
深度学习pytorch之22种损失函数数学公式和代码定义深度学习pytorch之19种优化算法(optimizer)解析深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用摘要归一化(Normalization)是提升模型性能、加速训练的重要技巧。归一化方法可以帮助减少梯度消失或爆炸的问题,提升模型的收敛速度,且对最终模型的性能有显著影响。本文将以PyTorc
- PyTorch Lightning 的简单使用示例
idealmu
pytorch人工智能python
1.环境准备与依赖导入首先,代码需要导入了实现模型、数据处理和训练所需的各个包:importtorchfromtorchimportnnfromtorch.utils.dataimportDataLoader,random_splitfromtorchvision.datasetsimportMNISTfromtorchvision.transformsimportToTensorimportpy
- Torch-MLIR 项目使用教程
穆声淼Germaine
Torch-MLIR项目使用教程torch-mlirTheTorch-MLIRprojectaimstoprovidefirstclasssupportfromthePyTorchecosystemtotheMLIRecosystem.项目地址:https://gitcode.com/gh_mirrors/to/torch-mlir1.项目目录结构及介绍Torch-MLIR项目的目录结构遵循典型的
- 2024 最新计算机视觉学习路线(入门篇)_计算机视觉课程主线
m0_60721823
计算机视觉学习人工智能
Python是机器学习项目中最流行的编程语言之一,因为与Java和C++等其他编程语言相比,它简单易读。Python附带了许多可以加快开发速度的库,其中一些重要的库是OpenCV、TensorFlow、PyTorch等,它们专门用于图像处理相关任务。本文旨在向初学者介绍这一领域,为他们提供有关涉及图像的机器学习应用程序背后概念的基本知识,并从高层次的角度深入了解这些库如何在底层协同工作,以便他们在
- 使用pytorch和opencv根据颜色相似性提取图像
深蓝海拓
机器视觉和人工智能学习opencv学习笔记pytorchopencv人工智能
需求:将下图中的花朵提取出来。代码:importcv2importtorchimportnumpyasnpimporttimedefget_similar_colors(image,color_list,threshold):#将图像和颜色列表转换为torch张量device=torch.device('cuda'iftorch.cuda.is_available()else'cpu')image
- PyTorch数据加载:实战入门
秋.
pytorch人工智能python数据加载
"好的数据加载是成功训练的第一步"一、为什么要用DataLoader?当我们刚开始学习深度学习时,常常会这样处理数据:#传统方式加载数据images=[...]#所有图片数据labels=[...]#所有标签foriinrange(0,len(images),32):batch_images=images[i:i+32]batch_labels=labels[i:i+32]#训练代码...这种方式
- 大模型国产化迁移大模型到昇腾教程(Pytorch版)
科技互联人生
科技数码人工智能AIGC语言模型
大模型国产化适配10-快速迁移大模型到昇腾910B保姆级教程(Pytorch版)随着ChatGPT的火爆,AI大模型时代来临,但算力紧张。中美贸易战及美国制裁AI芯片,国产化势在必行。已有国产AI芯片和Mindformers框架,基于昇腾910训练大模型,使用MindIE实现大模型服务化。本文介绍如何迅速将大型模型迁移到昇腾910B,许多入门者都是从斯坦福羊驼开始的。我们将利用羊驼的训练代码和数据
- 大模型微调入门(Transformers + Pytorch)
昵称不能为null
pythonllm机器学习人工智能
目标输入:你是谁?输出:我们预训练的名字。训练为了性能好下载小参数模型,普通机器都能运行。下载模型#方式1:使用魔搭社区SDK下载#down_deepseek.pyfrommodelscopeimportsnapshot_downloadmodel_dir=snapshot_download('deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B')#方式2:gitl
- 计算机视觉实战:YOLOv8在工业质检中的应用(附完整代码+数据集)
emmm形成中
深度学习人工智能python计算机视觉
计算机视觉实战:YOLOv8在工业质检中的应用(附完整代码+数据集)摘要:本文为零基础读者系统讲解目标检测核心原理,基于YOLOv8实现工业缺陷检测实战项目。从数据标注到模型部署,包含环境配置、数据增强、模型训练全流程详解,手把手教你打造高精度智能质检系统!关键词:YOLOv8、目标检测、工业质检、缺陷识别、PyTorch一、为什么选择YOLOv8做工业质检?1.1工业质检的三大痛点人工成本高:传
- RNN原理+实战 pytorch--lstm--gru
甜辣uu
python从入门到精通tensorflowpythonpytorch深度学习
rnn原理:https://blog.csdn.net/qq_39422642/article/details/78676567其中每个圆圈可以看作是一个单元,而且每个单元做的事情也是一样的,因此可以折叠呈左半图的样子。用一句话解释RNN,就是一个单元结构重复使用。RNN中的结构细节:1.可以把StSt当作隐状态,捕捉了之前时间点上的信息。就像你去考研一样,考的时候记住了你能记住的所有信息。2.o
- 大语言模型技术专栏(三):Attention机制——从RNN到Transformer的惊世一跃!
北海yy
大语言模型技术专栏语言模型rnntransformer
文章目录概要一、Attention机制:让AI学会「划重点」二、Attention机制的核心原理三、Self-Attention:Transformer的核心四、代码实战:用PyTorch实现Attention五、Attention的进化:从Transformer到GPT概要大家好,我是北海yy,继续带来大语言模型技术专栏的深度解析!在上一期《RNN语言模型——让AI真正「记住」上下文的秘密武器》
- Transformer 代码剖析7 - 词元嵌入(TokenEmbedding) (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、类定义与继承关系剖析1.1代码结构图示神经网络基础模块词嵌入基类自定义词元嵌入构造函数定义基类初始化词汇量参数维度参数填充标识参数1.2代码实现精讲"""@author:Hyunwoong@when:2019-10-22@homepage:https://github.com/gusdnd852"""fromtorchimportnnclassTokenEmbedding(nn.Embeddi
- 使用深度学习模型U-Net进行训练基于哨兵2的作物分割数据集。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测
计算机C9硕士_算法工程师
分割数据深度学习pytorch人工智能
使用深度学习模型如U-Net进行训练基于哨兵2的作物分割。PyTorch框架为例,如何构建和训练U-Net模型来完成基于哨兵2的作物分割检测基于哨兵2的作物分割,共18种作物类型(背景,草地,软冬小麦,玉米,冬季大麦,冬季油菜,春季大麦,向日葵,葡萄藤,甜菜,冬季小黑麦,冬季硬质小麦,水果、蔬菜、花卉,土豆,豆科饲料,大豆,果园,混合谷物,高粱),38到61个不同时间段同一位置10通道多光谱图像,
- 深度学习框架之主流学习框架
uu1224
深度学习学习人工智能机器学习神经网络
深度学习框架是一类专门设计用来简化和加速神经网络模型开发过程的软件工具。它们提供了构建、训练和部署神经网络所需的各种功能和库。以下是一些主流的深度学习框架及其特点:TensorFlow:由Google开发,是一个广泛使用的开源深度学习框架。它以强大的图计算模型和分布式计算能力著称,并且通过高级API如Keras,为用户提供了易于上手的开发体验。PyTorch:由Facebook开发,以其动态计算图
- pytorch 机械臂逆运动学迭代数值解
chase。
机器人机器人
https://github.com/UM-ARM-Lab/pytorch_kinematics分享一个求解运动学逆解的第三方库pytorch_kinematics,以下是我写的一份集成样例。importsysimportitertoolsimporttypingfromconcurrent.futuresimportThreadPoolExecutor,as_completedfromconte
- 【Pytorch】基于LSTM-KAN、BiLSTM-KAN、GRU-KAN、TCN-KAN、Transformer-KAN(各种KAN修改一行代码搞定)的共享单车租赁预测研究(数据可换)Python
冒泡芳
pythonpytorchlstm
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、TCN与KAN简介三、基于TCN-KAN的共享单车租赁预测模型四、研究挑战与展望基于LSTM-KAN、BiLSTM-KAN、GRU-KAN、TCN-KAN、Transformer-KAN的共享单车租赁预测研究1.引言2.模型介绍
- Transformer 代码剖析9 - 解码器模块Decoder (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、模块架构全景图1.1核心功能定位Transformer解码器是序列生成任务的核心组件,负责根据编码器输出和已生成序列预测下一个目标符号。其独特的三级注意力机制架构使其在机器翻译、文本生成等任务中表现出色。下面是解码器在Transformer架构中的定位示意图:解码器层组件解码器内部结构Transformer自注意力交叉注意力前馈网络残差连接+层归一化嵌入层位置编码解码器层1解码器层2...解码
- Pytorch神经网络魔改之:模型融合 - 速通(1)
lczdyx
pytorch神经网络深度学习python人工智能
本文将以几种常见方法为例,介绍如何进行Pytorch神经网络的模型融合:1.子模型串联(SequentialConcatenation)在这个方法中,输入数据x首先通过FeatureExtractor(即:子模型1),处理后的结果再传递给Classifier(即:子模型2)。最后,返回Classifier的输出。这种方式允许将两个子模型串联起来,形成一个组合模型:importtorch.nnasn
- Transformer预测 | 基于TCN-Transformer的股票价格预测(Pytorch)
机器学习之心
#Transformer模型transformerpytorch深度学习TCN-Transformer股票价格预测
文章目录预测效果文章概述程序设计参考资料预测效果文章概述Transformer预测|基于TCN-Transformer的股票价格预测(Python)Transformer模型本质上都是预训练语言模型,大都采用自监督学习(Self-supervisedlearning)的方式在大量生语料上进行训练,也就是说,训练这些Transformer模型完全不需要人工标注数据。Transformer模型的标志就
- win11编译pytorchvision cuda128版本流程
System_sleep
pytorchpython编译windowscuda
1.前置条件本篇续接自win11编译pytorchcuda128版本流程,阅读前请先参考上一篇配置环境。访问https://kkgithub.com/pytorch/vision/archive/refs/tags/v0.21.0.tar.gz下载源码,下载后解压。2.编译打开MiniforgePrompt,依次执行如下代码:condaactivatetorch_build_envcondains
- pytorch与深度学习随记——AlexNet
黑色的山岗在沉睡
深度学习随记深度学习pytorch人工智能
AlexNet和LeNet的设计理念非常相似,但也存在显著差异:基本结构对比网络深度:AlexNet比LeNet-5要深得多,AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。激活函数:AlexNet使用ReLU而不是sigmoid作为其激活函数,这有助于缓解梯度消失问题并加速训练过程。AlexNet架构的创新点局部响应归一化(LRN):AlexNet引入LRN层,可以创建
- 从零到一:利用DeepSeek构建高精度图像分类模型实战解析
一碗黄焖鸡三碗米饭
人工智能前沿与实践分类数据挖掘人工智能
引言:为什么选择DeepSeek进行图像分类?在计算机视觉领域,图像分类作为基础任务,其技术演进经历了从传统特征工程到深度学习的革命性转变。DeepSeek作为国产自研的深度学习框架,凭借其高效计算优化和灵活架构设计,在ImageNet等基准测试中展现出与PyTorch、TensorFlow等主流框架相媲美的性能。本文将手把手带您实现从零搭建工业级图像分类模型的全过程。一、DeepSeek技术架构
- 《动手学PyTorch深度学习建模与应用》第二章:2.4-2.6节详解
环工人学Python
深度学习pytorch人工智能python机器学习学习
写在前面:不知不觉已经更了第一个章节,目前的内容都是很基础的内容,有人会问现在ai时代,还有必要学习这些内容吗,我想说的是,越是基础的内容我们越要认真去学习和分析,ai可以快速解决问题,但是我希望我们可以知其所以然,感谢所有支持的收藏和粉丝,希望这些文章对你们有些许帮助!点点关注不迷路,免费的赞和收藏走起来!后续更新第一时间提示哦,每周会更新不同内容,下周更新如何用各种模态的大模型去为你服务,编写
- 探索未来智能:Lucidrains的Mixture of Experts框架详解
咎旗盼Jewel
探索未来智能:Lucidrains的MixtureofExperts框架详解mixture-of-expertsAPytorchimplementationofSparsely-GatedMixtureofExperts,formassivelyincreasingtheparametercountoflanguagemodels项目地址:https://gitcode.com/gh_mirror
- 程序员未来的出路:行业趋势与职业发展分析
guzhoumingyue
AIpython
随着技术的发展和行业需求的变化,程序员的职业出路也在不断演变。以下是程序员未来可能的职业发展方向及具体建议:一、技术深耕路线AI与机器学习专家趋势:AI技术在各行业的应用日益广泛,从自动驾驶到智能客服,需求持续增长。技能要求:Python、TensorFlow、PyTorch、数据挖掘、算法优化。发展路径:从机器学习工程师做起,积累项目经验。深入研究深度学习、强化学习等前沿技术。成为AI架构师或数
- 图像识别-pytorch
星辰瑞云
机器学习cnnpytorch
Pytorch神经网络工具箱神经网络核心组件神经网络的基本组件层:包括卷积层、池化层、全连接层等。层是神经网络的基本结构,输入张量通过层后变为输出张量。模型:由层构成的网络结构,如AlexNet、VGG等。模型可以是预训练的,也可以自己搭建。损失函数:用于衡量预测值与真实值之间的差距,如均方误差。损失函数越小越好。优化器:用于调整权重和偏置,使损失函数最小化。优化器决定了参数的调整方式。误差反传(
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement