import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import webbrowser
link = "http://pandas.pydata.org/pandas-docs/version/0.20/io.html"
webbrowser.open(link)
True
df1 = pd.read_clipboard()
df1
Format Type | Data Description | Reader | Writer | |
---|---|---|---|---|
0 | text | CSV | read_csv | to_csv |
1 | text | JSON | read_json | to_json |
2 | text | HTML | read_html | to_html |
3 | text | Local clipboard | read_clipboard | to_clipboard |
4 | binary | MS Excel | read_excel | to_excel |
5 | binary | HDF5 Format | read_hdf | to_hdf |
6 | binary | Feather Format | read_feather | to_feather |
7 | binary | Msgpack | read_msgpack | to_msgpack |
8 | binary | Stata | read_stata | to_stata |
9 | binary | SAS | read_sas | |
10 | binary | Python Pickle Format | read_pickle | to_pickle |
11 | SQL | SQL | read_sql | to_sql |
12 | SQL | Google Big Query | read_gbq | to_gbq |
import sys #查看Python版本
print (sys.version)
print (sys.version_info)
3.6.2 |Continuum Analytics, Inc.| (default, Jul 20 2017, 12:30:02) [MSC v.1900 64 bit (AMD64)]
sys.version_info(major=3, minor=6, micro=2, releaselevel=‘final’, serial=0)
df1.to_clipboard #写入粘贴板,用于复制到Excel里
df1.to_csv("df1.csv")
import os
os.listdir()
[’.ipynb_checkpoints’,
‘df1.csv’,
‘df1.html’,
‘df1.xlsx’,
‘one_array.npy’,
‘two_array.npz’,
‘x.pkl’,
‘第三章pandas:Dataframe.ipynb’,
‘第三章Pandas:Dataframe_IO .ipynb’,
‘第三章Pandas:Series.ipynb’,
‘第三章Pandas:深入理解series和dataframe.ipynb’,
‘第二章numpy:array的input和output.ipynb’,
‘第二章numpy:数组与矩阵运算.ipynb’,
‘第二章numpy:数组创建和访问.ipynb’]
!more df1.csv #查看写入后的文件内容,可以看到添加了index这个column,但这个实际上是不需要的
,Format Type,Data Description,Reader,Writer
0,text,CSV,read_csv,to_csv
1,text,JSON,read_json,to_json
2,text,HTML,read_html,to_html
3,text,Local clipboard,read_clipboard,to_clipboard
4,binary,MS Excel,read_excel,to_excel
5,binary,HDF5 Format,read_hdf,to_hdf
6,binary,Feather Format,read_feather,to_feather
7,binary,Msgpack,read_msgpack,to_msgpack
8,binary,Stata,read_stata,to_stata
9,binary,SAS,read_sas,?
10,binary,Python Pickle Format,read_pickle,to_pickle
11,SQL,SQL,read_sql,to_sql
12,SQL,Google Big Query,read_gbq,to_gbq
df1.to_csv("df1.csv",index=False)
!more df1.csv
Format Type,Data Description,Reader,Writer
text,CSV,read_csv,to_csv
text,JSON,read_json,to_json
text,HTML,read_html,to_html
text,Local clipboard,read_clipboard,to_clipboard
binary,MS Excel,read_excel,to_excel
binary,HDF5 Format,read_hdf,to_hdf
binary,Feather Format,read_feather,to_feather
binary,Msgpack,read_msgpack,to_msgpack
binary,Stata,read_stata,to_stata
binary,SAS,read_sas,?
binary,Python Pickle Format,read_pickle,to_pickle
SQL,SQL,read_sql,to_sql
SQL,Google Big Query,read_gbq,to_gbq
df2 = pd.read_csv("df1.csv")
df2
Format Type | Data Description | Reader | Writer | |
---|---|---|---|---|
0 | text | CSV | read_csv | to_csv |
1 | text | JSON | read_json | to_json |
2 | text | HTML | read_html | to_html |
3 | text | Local clipboard | read_clipboard | to_clipboard |
4 | binary | MS Excel | read_excel | to_excel |
5 | binary | HDF5 Format | read_hdf | to_hdf |
6 | binary | Feather Format | read_feather | to_feather |
7 | binary | Msgpack | read_msgpack | to_msgpack |
8 | binary | Stata | read_stata | to_stata |
9 | binary | SAS | read_sas | ? |
10 | binary | Python Pickle Format | read_pickle | to_pickle |
11 | SQL | SQL | read_sql | to_sql |
12 | SQL | Google Big Query | read_gbq | to_gbq |
df1.to_json()
‘{“Format Type”:{“0”:“text”,“1”:“text”,“2”:“text”,“3”:“text”,“4”:“binary”,“5”:“binary”,“6”:“binary”,“7”:“binary”,“8”:“binary”,“9”:“binary”,“10”:“binary”,“11”:“SQL”,“12”:“SQL”},“Data Description”:{“0”:“CSV”,“1”:“JSON”,“2”:“HTML”,“3”:“Local clipboard”,“4”:“MS Excel”,“5”:“HDF5 Format”,“6”:“Feather Format”,“7”:“Msgpack”,“8”:“Stata”,“9”:“SAS”,“10”:“Python Pickle Format”,“11”:“SQL”,“12”:“Google Big Query”},“Reader”:{“0”:“read_csv”,“1”:“read_json”,“2”:“read_html”,“3”:“read_clipboard”,“4”:“read_excel”,“5”:“read_hdf”,“6”:“read_feather”,“7”:“read_msgpack”,“8”:“read_stata”,“9”:“read_sas”,“10”:“read_pickle”,“11”:“read_sql”,“12”:“read_gbq”},“Writer”:{“0”:“to_csv”,“1”:“to_json”,“2”:“to_html”,“3”:“to_clipboard”,“4”:“to_excel”,“5”:“to_hdf”,“6”:“to_feather”,“7”:“to_msgpack”,“8”:“to_stata”,“9”:"\u00a0",“10”:“to_pickle”,“11”:“to_sql”,“12”:“to_gbq”}}’
pd.read_json(df1.to_json())
Data Description | Format Type | Reader | Writer | |
---|---|---|---|---|
0 | CSV | text | read_csv | to_csv |
1 | JSON | text | read_json | to_json |
10 | Python Pickle Format | binary | read_pickle | to_pickle |
11 | SQL | SQL | read_sql | to_sql |
12 | Google Big Query | SQL | read_gbq | to_gbq |
2 | HTML | text | read_html | to_html |
3 | Local clipboard | text | read_clipboard | to_clipboard |
4 | MS Excel | binary | read_excel | to_excel |
5 | HDF5 Format | binary | read_hdf | to_hdf |
6 | Feather Format | binary | read_feather | to_feather |
7 | Msgpack | binary | read_msgpack | to_msgpack |
8 | Stata | binary | read_stata | to_stata |
9 | SAS | binary | read_sas |
df1.to_html()
'\n \n \n \n Format Type \n Data Description \n Reader \n Writer \n \n \n \n \n 0 \n text \n CSV \n read_csv \n to_csv \n \n \n 1 \n text \n JSON \n read_json \n to_json \n \n \n 2 \n text \n HTML \n read_html \n to_html \n \n \n 3 \n text \n Local clipboard \n read_clipboard \n to_clipboard \n \n \n 4 \n binary \n MS Excel \n read_excel \n to_excel \n \n \n 5 \n binary \n HDF5 Format \n read_hdf \n to_hdf \n \n \n 6 \n binary \n Feather Format \n read_feather \n to_feather \n \n \n 7 \n binary \n Msgpack \n read_msgpack \n to_msgpack \n \n \n 8 \n binary \n Stata \n read_stata \n to_stata \n \n \n 9 \n binary \n SAS \n read_sas \n \n \n \n 10 \n binary \n Python Pickle Format \n read_pickle \n to_pickle \n \n \n 11 \n SQL \n SQL \n read_sql \n to_sql \n \n \n 12 \n SQL \n Google Big Query \n read_gbq \n to_gbq \n \n \n
'
df1.to_html("df1.html")
os.listdir()
[’.ipynb_checkpoints’,
‘df1.csv’,
‘df1.html’,
‘one_array.npy’,
‘two_array.npz’,
‘x.pkl’,
‘第三章pandas:Dataframe.ipynb’,
‘第三章Pandas:Dataframe_IO .ipynb’,
‘第三章Pandas:Series.ipynb’,
‘第三章Pandas:深入理解series和dataframe.ipynb’,
‘第二章numpy:array的input和output.ipynb’,
‘第二章numpy:数组与矩阵运算.ipynb’,
‘第二章numpy:数组创建和访问.ipynb’]
df1.to_excel("df1.xlsx")
!ls
驱动器 D 中的卷是 LENOVO
卷的序列号是 AEED-1D16
D:\Python_DS_Project 的目录
2020-08-12 09:44 .
2020-08-12 09:44 ..
2020-08-09 17:06 .ipynb_checkpoints
2020-08-10 13:58 509 df1.csv
2020-08-10 17:08 2,057 df1.html
2020-08-10 17:06 5,479 df1.xlsx
2020-08-08 09:49 120 one_array.npy
2020-08-08 10:08 474 two_array.npz
2020-08-08 09:46 195 x.pkl
2020-08-09 10:38 28,721 第三章pandas:Dataframe.ipynb
2020-08-12 09:44 27,022 第三章Pandas:Dataframe_IO .ipynb
2020-08-08 17:43 11,474 第三章Pandas:Series.ipynb
2020-08-09 11:28 17,656 第三章Pandas:深入理解series和dataframe.ipynb
2020-08-08 10:16 7,691 第二章numpy:array的input和output.ipynb
2020-08-07 16:39 18,123 第二章numpy:数组与矩阵运算.ipynb
2020-08-07 16:18 10,928 第二章numpy:数组创建和访问.ipynb
13 个文件 130,449 字节
3 个目录 81,778,208,768 可用字节