- 全球企业生成式AI应用图谱:601个案例揭示11行业×6类智能体实践,全网最详细!
写在前面:本文为谷歌发布的《601real-worldgenAIusecasesfromtheworld’sleadingorganizations》原文链接为:https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders?hl=en以下案例按照“汽车与物流、商业与专用
- 推荐项目: Few-Shot-Adversarial-Learning-for-face-swap
邱晋力
推荐项目:Few-Shot-Adversarial-Learning-for-face-swap去发现同类优质开源项目:https://gitcode.com/1、项目介绍Few-Shot-Adversarial-Learning-for-face-swap是一个基于PyTorch的开源实现,重演了三星AI实验室的一项前沿研究——“Few-ShotAdversarialLearningofReal
- 【大语言模型基础】GPT(Generative Pre-training )生成式无监督预训练模型原理
前言ELMo:将上下文当作特征,但是无监督的语料和我们真实的语料还是有区别的,不一定符合我们特定的任务,是一种双向的特征提取。OpenAIGPT:通过transformerdecoder学习出来一个语言模型,不是固定的,通过任务fine-tuning,用transfomer代替ELMo的LSTM。OpenAIGPT其实就是缺少了encoder的transformer:当然也没了encoder与de
- SPGAN: Siamese projection Generative Adversarial Networks
这张生成的图像能检测吗
优质GAN模型训练自己的数据集人工智能生成对抗网络计算机视觉深度学习神经网络算法
简介简介:该论文针对传统GANs中鉴别器采用硬边际分类导致的误分类问题,提出了基于Siameseprojection网络的SPGAN方法。主要创新点包括:(1)设计Siameseprojection网络来测量特征相似性;(2)提出相似特征对抗学习框架,将相似性测量融入生成器和鉴别器的损失函数;(3)通过相似特征对抗学习,鉴别器能最大化真实图像和生成图像特征的差异性,生成器能合成包含更多真实图像特征
- 【论文笔记ing】Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem
Booksort
online笔记论文论文阅读transformer深度学习
论文中使用一个PointerFormer模型编码器部分:可逆残差模型堆叠解码器部分:指针网络自回归对于一次任务而言,推理阶段:编码器部分:一次解码器部分:循环N次,直至任务结束在训练阶段,使用强化学习,对于一个N个节点的TSP实例,算法中会以不同的起点,跑N次,得到N个轨迹,以满足TSP的对称特性,表示这都是属于一个TSP问题的(真实)解然后会计算这样表示归一化奖励,得到一个advantage,然
- 【论文笔记】GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving
原文链接:https://arxiv.org/abs/2506.00034v1简介:现有的多传感器融合方法多使用基于注意力的拉直(flatten)融合或通过几何变换的BEV融合,但前者可解释性差,后者计算开销大(如下图(a)(b)所示)。本文提出GaussianFusion(下图(c)),一种基于高斯的多传感器融合框架,用于端到端自动驾驶。使用直观而紧凑的高斯表达,聚合不同传感器的信息。具体来说,
- 生成式人工智能实战 | 条件生成对抗网络(conditional Generative Adversarial Network, cGAN)
盼小辉丶
生成对抗网络神经网络深度学习生成式人工智能pytorch
生成式人工智能实战|条件生成对抗网络0.前言1.条件生成对抗网络1.1GAN基础回顾1.2cGAN核心思想2.cGAN网络架构2.1数学原理2.2网络架构3.实现cGAN3.1环境准备与数据加载3.2模型构建3.3模型训练0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来深度学习领域最具突破性的技术之一,能够生成逼真的图像、音频甚至文本。然而,传统的G
- 【论文笔记】RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
AustinCyy
论文笔记论文阅读
论文信息论文标题:RAGLAB:AModularandResearch-OrientedUnifiedFrameworkforRetrieval-AugmentedGeneration-EMNLP24论文作者:XuanwangZhang-NanjingUniversity论文链接:https://arxiv.org/abs/2408.11381代码链接:https://github.com/fat
- Llama改进之——RoPE旋转位置编码
愤怒的可乐
NLP项目实战#LLaMARoPE旋转位置编码
引言旋转位置编码(RotaryPositionEmbedding,RoPE)将绝对相对位置依赖纳入自注意力机制中,以增强Transformer架构的性能。目前很火的大模型LLaMA、QWen等都应用了旋转位置编码。之前在[论文笔记]ROFORMER中对旋转位置编码的原始论文进行了解析,重点推导了旋转位置编码的公式,本文侧重实现,同时尽量简化数学上的推理,详细推理可见最后的参考文章。复数与极坐标复数
- Llama改进之——均方根层归一化RMSNorm
愤怒的可乐
NLP项目实战#llama
引言在学习完GPT2之后,从本文开始进入Llama模型系列。本文介绍Llama模型的改进之RMSNorm(均方根层归一化)。它是由RootMeanSquareLayerNormalization论文提出来的,可以参阅其论文笔记1。LayerNorm层归一化(LayerNorm)对Transformer等模型来说非常重要,它可以帮助稳定训练并提升模型收敛性。LayerNorm针对一个样本所有特征计算
- GitHub 趋势日报 (2025年06月28日)
qianmoQ
GitHub项目趋势日报(2025年)github
由TrendForge系统生成|https://trendforge.devlive.org/本日报中的项目描述已自动翻译为中文今日获星趋势图今日获星趋势图572ottomator-agents425twenty286Graphite132full-stack-fastapi-template130flux127sniffnet87generative-ai-for-beginners82pot-
- 生成式人工智能实战 | 深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)
盼小辉丶
生成式人工智能实战150讲人工智能生成对抗网络神经网络
生成式人工智能实战|深度卷积生成对抗网络0.前言1.模型与数据集分析1.1模型分析1.2数据集介绍2.构建DCGAN生成人脸图像2.1数据处理2.2模型构建2.3模型训练0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetworks,DCGAN)是基于生成对抗网络(ConvolutionalGenerativeAdversarialNet
- Linux netstat 指令
halugin
Linux指令linux运维
Linuxnetstat指令netstat(NetworkStatistics)是Linux系统中用于查看网络状态、连接、路由表和接口统计信息的经典命令行工具。它为系统管理员和开发人员提供了强大的网络诊断功能,帮助分析网络连接、监控流量以及排查网络问题。尽管在现代Linux系统中,netstat正在被更新的工具(如ss)部分取代,但其简单性和广泛适用性使其仍然是许多场景下的首选工具。什么是nets
- Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model 论文阅读
钟屿
论文阅读人工智能深度学习学习图像处理计算机视觉
Diff-Retinex:用生成式扩散模型重新思考低光照图像增强摘要本文中,我们重新思考了低光照图像增强任务,并提出了一种物理可解释的生成式扩散模型,称为Diff-Retinex。我们的目标是整合物理模型和生成网络的优点。此外,我们希望通过生成网络补充甚至推断低光照图像中缺失的信息。因此,Diff-Retinex将低光照图像增强问题表述为Retinex分解和条件图像生成。在Retinex分解中,我
- 【深度学习|学习笔记】生成模型(Generative Model)和判别模型(Discriminative Model)的原理、数学定义、经典模型、优劣对比、联系与融合详解。
努力毕业的小土博^_^
机器学习基础算法优质笔记1深度学习学习笔记人工智能神经网络
【深度学习|学习笔记】生成模型(GenerativeModel)和判别模型(DiscriminativeModel)的原理、数学定义、经典模型、优劣对比、联系与融合详解。【深度学习|学习笔记】生成模型(GenerativeModel)和判别模型(DiscriminativeModel)的原理、数学定义、经典模型、优劣对比、联系与融合详解。文章目录【深度学习|学习笔记】生成模型(Generative
- 论文笔记 <交通灯><多智能体>CoLight管理交通灯
青椒大仙KI11
论文阅读
今天看的是论文Colight:学习网络级合作进行交通信号控制论文提出的CoLight模型是一种基于强化学习和图注意力网络的交通信号灯控制方法,旨在解决城市道路网络中的交通信号的写作问题,提升车辆通行效率。问题定义为:将交通信号控制问题建模为马尔可夫博弈,每个路口由一个智能体控制,智能体通过观察部分系统状态(当前相位和各车道车辆数),选择动作(下一时间段的相位),目标是最小化路口周围车道的平均队列长
- 《基于超声的深度学习模型用于降低BI-RADS 4A乳腺病变的恶性率》论文笔记 MobileNet
往事随风、、
论文笔记机器学习深度学习论文阅读人工智能机器学习健康医疗
《APPLICATIONOFDEEPLEARNINGTOREDUCETHERATEOFMALIGNANCYAMONGBI-RADS4ABREASTLESIONSBASEDONULTRASONOGRAPHY》《基于超声的深度学习模型用于降低BI-RADS4A乳腺病变的恶性率》原文地址:链接文章目录摘要简介方法患者图像获取与处理深度学习模型统计分析结果讨论结论摘要本研究旨在开发一个基于超声(US)图像
- 论文笔记--Language Models are Unsupervised Multitask Learners
Isawany
论文阅读论文阅读语言模型transformerchatgpt自然语言处理
论文笔记GPT-2--LanguageModelsareUnsupervisedMultitaskLearners1.文章简介2.文章导读2.1概括2.2文章重点技术2.2.1数据集WebText2.2.2分词方法3.GPT-1&GPT-24.文章亮点5.原文传送门6.References1.文章简介标题:LanguageModelsareUnsupervisedMultitaskLearners
- You Only Look Once Unified, Real-Time Object Detection论文笔记
__Lo__
目标检测论文阅读深度学习
文章结构统一检测框架(UnifiledDetection)核心思想YOLO将目标检测视为一个端到端的回归问题,输入的图像经过SingleForwardPass,直接输出物体的信息(边界框的位置、边界框的置信度、类别概率);优势在于速度快,全局理解上下文,这里全局理解上下文的意思是识别物体和背景的关系,减少误检。网络设计网格划分(GridDivision)将图像划分为一个S×S的网格,文中S=7;共
- WAN:Open and advanced large-scale video generative models
Kun Li
图像视频生成大模型深度学习人工智能
https://zhuanlan.zhihu.com/p/28890549605https://zhuanlan.zhihu.com/p/28890549605WanAI|Wan2.1:LeadingAIVideoGenerationModel
- 【论文笔记】UnifiedQA:新SOTA,生成模型一统问答任务
iLuz
深度学习自然语言处理
目录引言模型介绍1.输入格式2.实验结果总结引言问答任务有多种形式,常见的有抽取式问答(EX)、摘要式问答(AB)、多选题式问答(MC)、判断式问答(YN)。一般的解决方案是针对不同形式的问答任务设计不同的模型。例如,抽取式问答、多选题式问答、判断式问答可以转化为分类任务,摘要式问答可以转换为生成任务。尽管任务形式不同,但模型所需的语义理解和推理能力是共通的,或许不需要format-special
- [论文笔记] [2008] [ICML] Extracting and Composing Robust Features with Denoising Autoencoders
Alexzhuan
DL神经网络机器学习
在06年以前,想要去训练一个多层的神经网络是比较困难的,主要的问题是超过两层的模型,当时没有好的策略或方法使模型优化的很好,得不到预期的效果。在06年,Hinton提出的stackedautoencoders改变了当时的情况,那时候的研究者就开始关注各种自编码模型以及相应的堆叠模型。这篇的作者提出的DAE(DenoisingAutoencoders)就是当时蛮有影响力的工作。那个时候多层模型效果得
- 【论文笔记】SecAlign: Defending Against Prompt Injection with Preference Optimization
AustinCyy
论文笔记论文阅读
论文信息论文标题:SecAlign:DefendingAgainstPromptInjectionwithPreferenceOptimization-CCS25论文作者:SizheChen-UCBerkeley;Meta,FAIR论文链接:https://arxiv.org/abs/2410.05451代码链接:https://github.com/facebookresearch/SecAli
- CLIP论文笔记:Learning Transferable Visual Models From Natural Language Supervision
Q同学的nlp笔记
论文阅读语言模型人工智能nlp自然语言处理
导语会议:ICML2021链接:https://proceedings.mlr.press/v139/radford21a/radford21a.pdf当前的计算机视觉系统通常只能识别预先设定的对象类别,这限制了它们的广泛应用。为了突破这一局限,本文探索了一种新的学习方法,即直接从图像相关的原始文本中学习。本文开发了一种简单的预训练任务,通过预测图片与其对应标题的匹配关系,从而有效地从一个包含4亿
- 论文笔记:Large Language Models are Zero-Shot Next LocationPredictors
UQI-LIUWJ
论文笔记论文阅读语言模型人工智能
1intro下一个地点预测(NL)包括基于个体历史访问位置来预测其未来的位置。NL对于应对各种社会挑战至关重要,包括交通管理和优化、疾病传播控制以及灾害响应管理NL问题已经通过使用马尔可夫模型、基于模式的方法以及最近的深度学习(DL)技术(进行了处理。然而,这些方法并不具备地理转移能力因此,一旦这些模型在某个地理区域训练完毕,如果部署到不同的地理区域,它们将面临严重的性能下降尽管已经做出努力改善地
- 论文笔记:LSTPrompt: Large Language Models as Zero-Shot Time Series Forecastersby Long-Short-Term Prompt
UQI-LIUWJ
论文笔记论文阅读语言模型prompt
202402arxiv1intro1.1大模型+时间序列预测一般有两种类型的方法使用海量时间序列数据重新训练一个时间序列领域的大模型论文笔记:TimeGPT-1_timegpt论文-CSDN博客直接利用现有的大模型,设计prompt,将时间序列数据转换成大模型理解的文本,实现时间序列预测代价小+有成熟的可供使用的大模型1.2本文思路之前的方法大多集中在如何将时间序列数据转换成文本上将时间序列的数字
- GitHub 趋势日报 (2025年05月31日)
qianmoQ
GitHub项目趋势日报github
由TrendForge系统生成|https://trendforge.devlive.org/本日报中的项目描述已自动翻译为中文今日获星趋势图今日获星趋势图1153prompt-eng-interactive-tutorial509BillionMail435ai-agents-for-beginners128onlook112free-for-dev89generative-ai-for-beg
- 【论文笔记】ResNet论文的全面解析
浩瀚之水_csdn
#论文阅读笔记人工智能
论文:DeepResidualLearningforImageRecognition发表时间:2015发表作者:(MicrosoftResearch)He-Kaiming,Ren-Shaoqing,Sun-Jian论文链接:论文链接一、ResNet论文基本信息论文标题与发表信息论文标题:《DeepResidualLearningforImageRecognition》发表时间:2015年,并在20
- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- 【深度学习】16. Deep Generative Models:生成对抗网络(GAN)
pen-ai
深度学习机器学习深度学习生成对抗网络人工智能
DeepGenerativeModels:生成对抗网络(GAN)什么是生成建模(GenerativeModeling)生成模型的主要目标是从数据中学习其分布,从而具备“生成”数据的能力。两个关键任务:密度估计(DensityEstimation):学习真实数据的概率分布p(x)p(x)p(x)。样本生成(SampleGeneration):从模型学习的分布中采样,生成新样本。换句话说,生成建模不是
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f