- YOLOv8与Transformer:探索目标检测的新架构
AI架构设计之禅
AI大模型应用入门实战与进阶大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
YOLOv8与Transformer:探索目标检测的新架构关键词:目标检测,深度学习,YOLOv8,Transformer,计算机视觉,卷积神经网络摘要:目标检测是计算机视觉领域的一项重要任务,其目标是从图像或视频中识别和定位特定对象。近年来,YOLO(YouOnlyLookOnce)系列算法以其高精度和高速度成为目标检测领域的佼佼者。最新版本的YOLOv8引入了Transformer架构,进一步
- 两万字探讨时间轮算法
Damon_0411
算法javaspring
1.引言1.1背景介绍随着分布式系统、微服务架构的流行以及高并发场景的广泛应用,系统中处理延时任务的需求变得愈发重要。延时任务的常见场景包括:任务调度:某些任务需要按照预定时间执行,比如每天的定时数据备份。超时控制:网络连接的超时检测、数据库锁的释放延迟等。缓存管理:缓存数据的过期清理策略。事件驱动场景:如日志系统中,只有当所有日志接收完毕并经过一定延迟后才能触发归档。延时任务的本质是系统需要管理
- 图像生成大模型:Imagen 详解
转角再相遇
imagenpython深度学习计算机视觉
近年来,图像生成技术取得了显著进展,推动了计算机视觉和生成对抗网络(GAN)等领域的发展。Imagen是一个新兴的图像生成大模型,其在生成高质量、逼真图像方面表现出色。本文将详细讲解Imagen的基本原理、架构、训练流程及应用场景。1.Imagen的基本原理1.1什么是Imagen?Imagen是一种基于深度学习的图像生成模型,结合了自注意力机制(Self-attentionMechanism)和
- 像素空间文生图之Imagen原理详解
funNLPer
AI算法ImagenstablediffusionAIGC
论文:PhotorealisticText-to-ImageDiffusionModelswithDeepLanguageUnderstanding项目地址:https://imagen.research.google/代码(非官方):https://github.com/deep-floyd/IF模型权重:https://huggingface.co/DeepFloyd/IF-I-XL-v1.0
- 【MySQL】Mysql数据库导入导出sql文件、备份数据库、迁移数据库
程序员洲洲
数据库数据库mysql导入导出sqlsql文件备份迁移
本文摘要:本文提出了xxx的实用开发小技巧。作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。同时欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习、深度学习从0到1系列文章。同时洲洲已经建立了程序员技术交流群,如果您感兴趣,可以私信我加入我的社群,也可以直接vx联系(文末有名片)v:bdizztt随时
- 实战千问2大模型第五天——VLLM 运行 Qwen2-VL-7B(多模态)
学术菜鸟小晨
千问多模型qwen2vl
一、简介VLLM是一种高效的深度学习推理库,通过PagedAttention算法有效管理大语言模型的注意力内存,其特点包括24倍的吞吐提升和3.5倍的TGI性能,无需修改模型结构,专门设计用于加速大规模语言模型(LLM)的推理过程。它通过优化显存管理、支持大模型的批处理推理以及减少不必要的内存占用,来提高多GPU环境下的推理速度和效率。VLLM的核心特点包括:显存高效性:VLLM能够动态管理显存,
- qwenvl 代码中的attention pool 注意力池如何理解,attention pool注意力池是什么?
OpenSani
AI大模型计算机视觉语言模型qwenvlLLM
qwenvl中的attentionpool如何理解,其实这就是一个概念的问题看qwenvl的huggingface的代码的时候,发现代码里有一个Resampler以及attn_pool,这和之前理解的连接池线程池表示资源复用的意思不太一样,查了一下:注意这里的pool和线程池连接池里面的pool不一样:深度学习中的池化:池化在深度学习中主要指通过滑动窗口对特征图进行下采样,提取最重要的特征,减少计
- 计算机视觉与深度学习:使用深度学习训练基于视觉的车辆检测器(MATLAB源码-Faster R-CNN)
ZhShy23
javascript深度学习
在人工智能领域,计算机视觉是一个重要且充满活力的研究方向。它使计算机能够理解和分析图像和视频数据,从而做出有意义的决策。其中,目标检测是计算机视觉中的一项关键技术,它旨在识别并定位图像中的多个目标对象。车辆检测作为目标检测的一个重要应用,在自动驾驶、智能交通系统等领域有着广泛的应用前景。本文将介绍如何使用MATLAB和深度学习技术,特别是FasterR-CNN模型,来训练一个车辆检测器。文章目录一
- GAN在图像增强中的应用实战指南
码字仙子
本文还有配套的精品资源,点击获取简介:图像增强技术通过算法改善图像质量,GAN作为一种生成对抗网络,在此领域具有重要应用。通过生成器和判别器的对抗性训练,GAN可以生成逼真图像、修复低质量图像、扩增数据集并进行风格迁移。本项目将介绍如何使用Python及其相关库实现GAN图像增强,包括模型的构建、训练和评估。通过项目案例学习,你可以掌握GAN在图像增强中的实际应用,提高图像处理和深度学习的技能。1
- UART中的奇偶校验和粘性奇偶校验(stick parity)
马志高
接口与协议IC验证
1.UART传输UART传输分为起始位,数据位(从低到高),奇偶校验位,停止位,我们这里详细介绍一下奇偶校验位。2.奇偶校验位奇偶校验是一种常见的校验位方法,用于检测数据传输中的错误。奇校验:数据位的1的个数加上附加位的1的个数为奇数偶校验:数据位的1的个数加上附加位的1的个数为偶数举个例子,假设我们有一个UART串口通信系统,每个数据帧包含8位数据和1位奇偶校验位。我们选择奇校验。数据帧1:数据
- DNA图谱分析:自动分析DNA图谱中的变异YOLOv5、YOLOv8、YOLOv10
2025年数学建模美赛
YOLO深度学习目标跟踪机器人人工智能
目录引言项目背景与目标YOLO模型简介DNA图谱数据集准备YOLOv5、YOLOv8和YOLOv10模型训练与优化DNA图谱变异检测的实现UI界面设计与实现评估与优化未来展望结论完整代码实现1.引言随着基因组学的进步,DNA图谱分析已经成为基因检测、疾病诊断、遗传学研究等领域的重要工具。在DNA图谱中,通常会呈现出染色体的多个片段,其中的一些变异可能对健康产生深远的影响。手工分析DNA图谱变异不仅
- 具体毕设方案100例之第4例STM32智能家居烟雾温度火灾防盗报警系统设计版本4
李学长单片机毕设
单片机毕设具体方案课程设计stm32智能家居单片机毕业设计嵌入式硬件51单片机
LCD1602液晶显示:实时展现当前检测到的烟雾浓度值,为用户提供直观的视觉信息。按键设置报警上限:用户可通过简单操作按键,自定义烟雾浓度的报警阈值,以满足不同场景的安全需求。蜂鸣器报警:当烟雾浓度超过用户设定的报警值时,蜂鸣器将立即启动,发出声音报警,提醒用户注意安全。无线WiFi传输:通过集成的ESP8266无线WiFi模块,将烟雾浓度数据实时传输至用户手机端,实现远程监控与数据查看。继电器模
- 【Block总结】CDFA,对比驱动特征聚合模块|即插即用,极大增强特征表达!
AI浩
Block总结计算机视觉深度学习目标检测
论文信息标题:ConDSeg:AGeneralMedicalImageSegmentationFrameworkviaContrast-DrivenFeatureEnhancement作者:MengqiLei,HaochenWu,XinhuaLv,XinWang机构:中国地质大学(武汉),百度公司发表时间:2024年12月11日会议:AAAI2025论文:https://arxiv.org/pdf
- 【Python】已解决:WARNING: pip is configured with locations that require TLS/SSL, however the ssl module i
屿小夏
pythonpipssl
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 深度学习模型推理速度/吞吐量计算(附代码)
Scabbards_
1500深度学习笔记深度学习人工智能
参考博文:https://mp.weixin.qq.com/s?__biz=MzI4MDYzNzg4Mw==&mid=2247546551&idx=2&sn=f198b6365e11f0a18832ff1203302632&chksm=ebb70e63dcc0877569d1838b2391744be628bf6cbb6e203a49f855e0769ecbbbf5a9929fe2db&scene
- PyTorch使用教程- Tensor包
Loving_enjoy
论文pytorch人工智能
###PyTorch使用教程-Tensor包PyTorch是一个流行的深度学习框架,它提供了一个易于使用的API来创建和操作张量(Tensors)。张量是一个多维数组,类似于NumPy中的ndarray,但它是基于GPU的,支持自动求导。本文将详细介绍PyTorch中的Tensor包,包括张量的创建、运算、形状变换、索引与切片、以及重要的张量处理方式。####一、张量的创建在PyTorch中,可以
- ChatGPT详解
Loving_enjoy
实用技巧人工智能自然语言处理
ChatGPT是一款由OpenAI研发和维护的先进的自然语言处理模型(NLP),全名为ChatGenerativePre-trainedTransformer,于2022年11月30日发布。以下是对ChatGPT的详细介绍:###一、技术架构与原理1.**技术架构**:ChatGPT建立在Transformer架构之上,这是一种深度学习模型,特别适用于处理自然语言。其核心是自注意力机制,允许模型在
- Kaggle欺诈检测:使用生成对抗网络(GAN)解决正负样本极度不平衡问题
Loving_enjoy
论文深度学习计算机视觉人工智能
###Kaggle欺诈检测:使用生成对抗网络(GAN)解决正负样本极度不平衡问题####引言在金融领域中,欺诈检测是一项至关重要的任务。然而,欺诈交易数据往往呈现出正负样本极度不平衡的特点,这给机器学习模型的训练带来了挑战。传统的分类算法在面对这种不平衡数据时,往往会导致模型对多数类(正常交易)过拟合,而对少数类(欺诈交易)的识别能力较差。为了解决这个问题,生成对抗网络(GAN)提供了一种有效的手
- 【开源】基于SpringBoot框架教学资料管理系统(计算机毕业设计)+万字毕业论文 T286
计算机毕业设计_gzs
开源springboot课程设计毕设java后端mybatis
系统合集跳转源码获取链接点击主页更能获取海量源码10年计算机开发经验,主营业务:源码获取、项目二开、语音辅导、远程调试、毕业设计、课程设计、毕业论文、BUG修改一、系统环境运行环境:最好是javajdk1.8,我们在这个平台上运行的。其他版本理论上也可以。IDE环境:Eclipse,Myeclipse,IDEA或者SpringToolSuite都可以tomcat环境:Tomcat7.x,8.x,9
- YOLOv10改进,YOLOv10检测头融合RepConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- 工作中常用 CMD 命令
书生-w
windowscmd
文章目录1.网络排障与端口检查1.1检测网络连通性1.2路由追踪1.3查看端口占用与连接状态2.进程管理2.1查看进程列表2.2结束指定进程3.文件与目录操作3.1快速查找并筛选日志3.2批量复制或镜像目录4.环境变量与系统信息4.1设置临时环境变量4.2设置系统环境变量4.3查看系统信息5.批处理脚本与自动化5.1将命令封装成`.bat`脚本5.2重定向和管道组合6.远程管理与故障排查6.1Te
- netty~ 基于netty实现服务端的长连接
17245
NIO~NettyNetty长连接心跳检测ScheduledFuture消息编码解码
描述socket长连接即服务端不断开客户端channel的连接,客户端需要定时向服务端进行心跳检测,服务端需要将过期未进行心跳检测的socket关闭。服务端关闭过期的channel连接:Netty提供了ScheduledFuture,可以通过ChannelHandlerContext.executor().schedule()创建,支持延时提交,也支持取消任务,为自动关闭提供了一个很好的实现方案。
- YOLOv11改进,YOLOv11检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- 2025年flask儿童教育系统程序+论文 可用于计算机毕业设计
zhihao503
flask课程设计python
本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容选题背景关于儿童教育系统的研究,现有研究主要集中在教育技术、教学设计、以及儿童心理学等领域。尽管这些研究为儿童教育提供了丰富的理论基础和实践指导,但专门针对整合了多种教育资源、适应不同年龄段儿童学习需求的综合教育系统的研究仍相对较少。随着信息技术的飞速发展和教育理念的不断
- 《Spring微服务实战》读书笔记
johnny233
读书笔记Spring
福利置顶,PDF版本电子书下载地址:百度网盘,密码:e45d。还是比较习惯中文阅读,因为速度足够快,毕竟我这样的菜逼要看的书籍太多,啃英文不知道得啃到什么时候(读英文文档不是问题,毕竟小硕毕业)。百度下载的这个中译本是迷途书童翻译的,很感谢。但是,这翻译的水平明显有待提高啊,很多地方明显感觉就是机器翻译的结果。Areyoukiddingme?另:本书基于Camden.SR5版本,略显过时。第一章欢
- NLP 中文拼写检测纠正论文 Automatic-Corpus-Generation 代码
后端java
拼写纠正系列NLP中文拼写检测实现思路NLP中文拼写检测纠正算法整理NLP英文拼写算法,如果提升100W倍的性能?NLP中文拼写检测纠正Paperjava实现中英文拼写检查和错误纠正?可我只会写CRUD啊!一个提升英文单词拼写检测性能1000倍的算法?单词拼写纠正-03-leetcodeedit-distance72.力扣编辑距离NLP开源项目nlp-hanzi-similar汉字相似度word-
- 别再被坑了! JavaScript类型检测的最佳实践
别再被坑了!JavaScript类型检测的最佳实践在JavaScript中,我们经常需要判断一个变量的类型。这个需求在编程中非常常见,因为不同类型的数据会影响到我们的代码逻辑。JavaScript提供了几种方法来检测数据类型,每种方法都有自己的优缺点。Object.prototype.toString.call()这是最万能的方法。它可以准确识别所有的JavaScript内置类型,包括基本类型和复
- AI绘画工具介绍
编程小郭
ai作画
市面上AI绘画工具众多,它们利用深度学习和图像处理技术,为用户提供了丰富的创作体验和可能性。以下是对几款主流AI绘画工具的详细介绍及横向对比:一、主流AI绘画工具介绍Midjourney简介:Midjourney是一个独立的研究实验室,专注于人工智能绘图,被广泛应用于设计、艺术创作、广告制作等领域。特点:以其强大的图像生成能力和跨界融合的创新特点著称,能够根据文本描述和视觉输入生成兼具故事性与视觉
- 文心一言vsGPT-4全面对比
编程小郭
文心一言chatgptjavapython人工智能ai
文心一言和GPT-4都是当前非常先进的人工智能语言模型,它们各自具有独特的特点和优势。以下是对这两款工具的全面比较:文心一言是由百度开发的一款大型人工智能语言模型,它基于强大的深度学习技术和海量的数据资源,具备出色的语言理解和生成能力。文心一言在中文处理方面尤为出色,能够准确理解中文语境和语义,生成流畅、自然的中文文本。文心一言还具备丰富的知识库和推理能力,能够回答各种问题,提供有用的信息和建议。
- 基于深度学习的认知架构的AI
SEU-WYL
深度学习dnn人工智能深度学习架构
基于深度学习的认知架构的AI是一类模仿人类认知过程的人工智能系统,旨在模拟人类感知、学习、推理、决策等复杂的认知功能。认知架构的目的是创建一个能够理解和处理复杂环境、实现自我学习和适应的AI系统。结合深度学习技术,这类AI可以更好地应对动态和复杂的任务需求。1.基于深度学习的认知架构的组成一个典型的基于深度学习的认知架构包含多个关键模块:感知模块:负责从外部环境中获取数据,处理和提取特征。深度学习
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite