单MapReduce程序算出高峰时间段哪张表被访问的最频繁

[单MapReduce]编写MapReduce程序算出高峰时间段(9-10点)哪张表被访问的最频繁

*纯个人见解,单个MapReduce解题过程,如有不足,请多多指教,谢谢

需求:

  1. * 用Hadoop分析海量日志文件,每行日志记录了如下数据: 
  2. *   TableName(表名),Time(时间),User(用户),TimeSpan(时间开销) 
  3. * 要求编写MapReduce程序算出高峰时间段(如9-10点)哪张表被访问的最频繁 
  4. * 以及这段时间访问这张表最多的用户,以及这个用户访问这张表的总时间开销。  
  5. * 先找出9-10点访问量最大的表 

测试数据:

 

 

  1.            TableName(表名),Time(时间),User(用户),TimeSpan(时间开销)
  2.            ==========================================================
  3.            *t003 6:00 u002 180
  4.            *t003 7:00 u002 180     
  5.            *t003 7:08 u002 180 
  6.            *t003 7:25 u002 180 
  7.            *t002 8:00 u002 180 
  8.            *t001 8:00 u001 240 
  9.            *t001 9:00 u002 300 
  10.            *t001 9:11 u001 240 
  11.            *t003 9:26 u001 180 
  12.            *t001 9:39 u001 300
  13.            ==========================================================

 

解题代码部分:

    Mapper.java

package com.company.max;

import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MaxMapper extends Mapper{
	@Override
	protected void map(LongWritable key, Text value, Mapper.Context context)
			throws IOException, InterruptedException {
		Date date = null;
		Date min = null;
		Date max = null;
		String string = value.toString();
                //*t003 6:00 u002 180 
		String[] split = string.split(" ");
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("hh:mm");
		try {
			date = simpleDateFormat.parse(split[1]);
			min = simpleDateFormat.parse("9:00");
			max = simpleDateFormat.parse("10:00");
			 //判断进行筛选出有用数据
			 
			 //*t001	9:00 u002 300 
			 //*t001	9:11 u001 240 
			 //*t003	9:26 u001 180 
			 //*t001	9:39 u001 300
			 
			if(date.compareTo(min)>=0 && date.compareTo(max)<=0) {
				context.write(new Text(split[0]), new Text(split[1]+" "+split[2]+" "+split[3]));
			}
		} catch (ParseException e) {
			e.printStackTrace();
		}
		
	}
}

 

 

   Reducer.java

 

 

package com.company.max;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MaxReducer extends Reducer{

	//	利用reduce()方法任务执行完成之后
	//	会调用一次cleanup()方法 
	//	来继续编写未完成的代码

	Map map = new HashMap<>();
	Map hashMap = new HashMap<>();
	List list = new ArrayList<>();
	
	@Override
	protected void reduce(Text key, Iterable value, Reducer.Context context)
			throws IOException, InterruptedException {
		for (Text text : value) {
			//因为value只能遍历一次,在这里把它放入list集合备用
			list.add(key.toString()+"\t"+text.toString());
			//	用map计算表名出现的次数
		        //	*t001 3
			//	*t003 1
			if(map.get(key.toString())==null) {
				map.put(key.toString(), 1);
			}else {
				map.put(key.toString(), map.get(key.toString())+1);
			}
		}
	}
	
	@Override
	protected void cleanup(Reducer.Context context) throws IOException, InterruptedException {
		//自定义方法获取key出现次数最多的那个表名,该方法在计算用户访问最多的时候可重用
		String maxKey = getMaxKey(map);
		//自定义方法计算用户访问最多的那位兄台
		String maxUser = getMaxUser(maxKey);
		int sum = 0;
		for (String string : list) {
			String[] split = string.split("\t");
			if(split[0].equals(maxKey)) {
			    //*t001	9:00 u002 300 
			    //*t001	9:11 u001 240 
			    //*t001	9:39 u001 300
				String[] split2 = split[1].split(" ");
				if(split2[1].equals(maxUser)) {
					sum += Integer.parseInt(split2[2]);
				}
			}
		}
		String key = maxKey+" "+maxUser+" "+sum;
		context.write(new Text(key), new Text());
	}

	private String getMaxUser(String maxKey) {
		for (String string : list) {
			String[] split = string.split("\t");
			if(split[0].equals(maxKey)) {
				System.out.println(string);
				String[] split2 = split[1].split(" ");

				 //	用map计算用户出现的次数
				 //	u001 2
				 // 	u002 1

				if(hashMap.get(split2[1])==null) {
					hashMap.put(split2[1], 1);
				}else {
					hashMap.put(split2[1], hashMap.get(split2[1])+1);
				}
			}
		}
		String maxUser = getMaxKey(hashMap);
		return maxUser;
	}

	private String getMaxKey(Map map2) {
		String key = "";
		int val = 0;
		Set> set = map2.entrySet();
		for (Entry entry : set) {
			//找出最大值,返回出现次数最多的那个表名
			if(val

 

 

   Runner.java

 

 

package com.company.max;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxRunner {
	public static void main(String[] args) throws Exception {
		Configuration configuration = new Configuration();
		Job job = Job.getInstance(configuration);
		
		job.setMapperClass(MaxMapper.class);
		job.setReducerClass(MaxReducer.class);
		job.setJarByClass(MaxRunner.class);
		
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(Text.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(Text.class);
		
		FileInputFormat.setInputPaths(job, new Path("/Users/xuran/Desktop/month02"));
		FileOutputFormat.setOutputPath(job, new Path("/Users/xuran/Desktop/month02/result"));
		
		boolean waitForCompletion = job.waitForCompletion(true);
		System.exit(waitForCompletion?0:1);
	}
}

 

 

运行结果:

*t001 u001 2160

 

你可能感兴趣的:(Java)