传送门——BZOJCH
传送门——Vjudge
设\(f_i\)表示\(i\)到\(1\)号点的最短距离,\(g_i\)表示\(i\)到\(2\)号点的最短距离,\(s_i\)表示\(n+1\)号点到\(i\)号点的最短距离,\(A=s_1,B=s_2\)
根据最短路三角形不等式,\(|f_i - A| \leq s_i \leq f_i + A , |g_i - B| \leq s_i \leq g_i + B\)
而\(s_i\)要取到最小值,所以\(s_i = \max\{|f_i - A| , |g_i - B|\}\)
所以我们要求的是\(\sum\limits_{i=1}^N \max\{|f_i - A| , |g_i - B|\}\),这相当于求一个动点\((A,B)\)到平面上\(N\)个点\((f_i,g_i)\)的最小切比雪夫距离和。
切比雪夫距离可以转为曼哈顿距离,将坐标\((x,y)\)变为\((\frac{x+y}{2} , \frac{x-y}{2})\),前者的切比雪夫距离等效于后者的曼哈顿距离。而曼哈顿距离可以直接拆开横纵坐标然后取中位数。
注意:我天真的以为2012年的题不会卡SPFA……
#include
#include
#include
#include
#include
#include
#include
#include
#define INF 0x3f3f3f3f
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
while(!isdigit(c) && c != EOF)
c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
}
#define PLI pair < long long , int >
#define st first
#define nd second
const int MAXN = 1e5 + 7;
struct Edge{
int end , upEd , w;
}Ed[MAXN * 6];
int head[MAXN] , N , M , cntEd;
long long dis[2][MAXN];
priority_queue < PLI > q;
inline void addEd(int a , int b , int w){
Ed[++cntEd].end = b;
Ed[cntEd].w = w;
Ed[cntEd].upEd = head[a];
head[a] = cntEd;
}
void SPFA(int ind){
memset(dis[ind] , 0x3f , sizeof(long long) * (N + 1));
dis[ind][ind + 1] = 0;
q.push(PLI(0 , ind + 1));
while(!q.empty()){
PLI t = q.top();
q.pop();
if(-t.st != dis[ind][t.nd]) continue;
for(int i = head[t.nd] ; i ; i = Ed[i].upEd)
if(dis[ind][Ed[i].end] > dis[ind][t.nd] + Ed[i].w){
dis[ind][Ed[i].end] = dis[ind][t.nd] + Ed[i].w;
q.push(PLI(-dis[ind][Ed[i].end] , Ed[i].end));
}
}
}
inline long long abss(long long x){return x < 0 ? -x : x;}
void out(long long a , int b){
cout << a / b << '.';
a %= b;
for(int i = 1 ; i <= 8 ; ++i){
a *= 10;
cout << a / b;
a %= b;
}
putchar('\n');
}
int main(){
vector < long long > x , y;
for(int T = read() ; T ; --T){
N = read(); M = read();
memset(head , 0 , sizeof(int) * (N + 1));
cntEd = 0;
for(int i = 1 ; i <= M ; ++i){
int a = read() , b = read() , c = read();
addEd(a , b , c); addEd(b , a , c);
}
SPFA(0); SPFA(1);
x.clear(); y.clear();
long long sum = 0;
for(int i = 1 ; i <= N ; ++i){
x.push_back(dis[0][i] - dis[1][i]);
y.push_back(dis[0][i] + dis[1][i]);
}
sort(x.begin() , x.end()); sort(y.begin() , y.end());
long long mid = x[N >> 1];
for(int i = 0 ; i < N ; ++i)
sum += abss(x[i] - mid);
mid = y[N >> 1];
for(int i = 0 ; i < N ; ++i)
sum += abss(y[i] - mid);
out(sum , 2 * N);
cerr << N << ' ' << sum << endl;
}
return 0;
}