本博客的参考文章及相关资料下载 :
ARM 存储 体系 简介 : ARM 处理器分为三个等级, 处理器寄存器 -> TCM 存储器 -> 辅助存储器, 由上到下, 处理速度依次变慢, 但是存储空间依次增加 ;
3.辅助存储器 : 开发板上的 NandFlash 达到 1G 大小的数量级别, SD 卡 等存储 设备; 该类型存储器 访问速度最慢, 但是数量最大;
Cache 的由来 : Cache 用于解决 处理器 与 存储器 之间 数据传输效率低下的问题;
Cache 定义 :
虚拟机地址 与 物理地址 :
MMU 作用 : 实现 物理地址 到 虚拟地址 的转换 ;
参考手册 : ARM核 手册 Arm1176jzfs.pdf ( 基于 6410 开发板 ARM 11 )
关闭 MMU 和 Cache 简介 :
C1 控制寄存器简介 :
C7 寄存器 简介 :
MCR p15, 0, , c7, c7, 0
, 这是 文档 中表格 3-71 Cache 操作 中给出的; 关闭 MMU 和 Cache 代码编写 :
disable_mmu :
; MCR p15, 0, , c7, c7, 0
, 其中 Rd 通用寄存器 设置为 R0, 最终代码为 MCR p15, 0, R0, c7, c7, 0
;MRC
来将协处理器中的内容读取到通用寄存器中, 语法格式为 MRC{cond} P15,,,,,
, 使用 MCR
将 Rd 寄存器中的值传送到 CP15 协处理器中, 语法格式为 MCR{cond} P15,,,,,
;MRC p15, 0, R0, c1, c0, 0
将 c1 寄存器中的值 读取到 R0 通用寄存器中; bic r0, r0, #0x7
;MRC p15, 0, r0, c1, c0, 0
指令, 将 R0 寄存器中的值 写回到 C1 寄存器中; BL
指令跳转到 disable_mmu
标号处执行, 同时将返回地址存储到了 LR
寄存器中, 返回时跳转到 LR
寄存器中的地址执行即可, 使用 mov pc, lr
指令, 执行 lr 中地址指向的位置的代码; disable_mmu :
mcr p15,0,r0,c7,c7,0 @ 设置 I-Cache 和 D-Cache 失效
mrc p15,0,r0,c1,c0,0 @ 将 c1 寄存器中的值 读取到 R0 通用寄存器中
bic r0, r0, #0x00000007 @ 使用 bic 位清除指令, 将 R0 寄存器中的 第 0, 1, 2 三位 设置成0, 代表 关闭 MMU 和 D-Cache
mcr p15,0,r0,c1,c0,0 @ 将 R0 寄存器中的值写回到 C1 寄存器中
mov pc, lr @ 返回到 返回点处 继续执行后面的代码
汇编代码示例 : Bootloader 流程 : ① 初始化异常向量表 , ② 设置 svc 模式 , ③ 关闭看门狗, ④ 关闭中断, ⑤ 关闭 MMU ;
@****************************
@File:start.S
@
@BootLoader 初始化代码
@****************************
.text @ 宏 指明代码段
.global _start @ 伪指令声明全局开始符号
_start: @ 程序入口标志
b reset @ reset 复位异常
ldr pc, _undefined_instruction @ 未定义异常, 将 _undefined_instruction 值装载到 pc 指针中
ldr pc, _software_interrupt @ 软中断异常
ldr pc, _prefetch_abort @ 预取指令异常
ldr pc, _data_abort @ 数据读取异常
ldr pc, _not_used @ 占用 0x00000014 地址
ldr pc, _irq @ 普通中断异常
ldr pc, _fiq @ 软中断异常
_undefined_instruction: .word undefined_instruction @ _undefined_instruction 标号存放了一个值, 该值是 32 位地址 undefined_instruction, undefined_instruction 是一个地址
_software_interrupt: .word software_interrupt @ 软中断异常
_prefetch_abort: .word prefetch_abort @ 预取指令异常 处理
_data_abort: .word data_abort @ 数据读取异常
_not_used: .word not_used @ 空位处理
_irq: .word irq @ 普通中断处理
_fiq: .word fiq @ 快速中断处理
undefined_instruction: @ undefined_instruction 地址存放要执行的内容
nop
software_interrupt: @ software_interrupt 地址存放要执行的内容
nop
prefetch_abort: @ prefetch_abort 地址存放要执行的内容
nop
data_abort: @ data_abort 地址存放要执行的内容
nop
not_used: @ not_used 地址存放要执行的内容
nop
irq: @ irq 地址存放要执行的内容
nop
fiq: @ fiq 地址存放要执行的内容
nop
reset: @ reset 地址存放要执行的内容
bl set_svc @ 跳转到 set_svc 标号处执行
bl disable_watchdog @ 跳转到 disable_watchdog 标号执行, 关闭看门狗
bl disable_interrupt @ 跳转到 disable_interrupt 标号执行, 关闭中断
bl disable_mmu @ 跳转到 disable_mmu 标号执行, 关闭 MMU
set_svc:
mrs r0, cpsr @ 将 CPSR 寄存器中的值 导出到 R0 寄存器中
bic r0, r0, #0x1f @ 将 R0 寄存器中的值 与 #0x1f 立即数 进行与操作, 并将结果保存到 R0 寄存器中, 实际是将寄存器的 0 ~ 4 位 置 0
orr r0, r0, #0xd3 @ 将 R0 寄存器中的值 与 #0xd3 立即数 进行或操作, 并将结果保存到 R0 寄存器中, 实际是设置 0 ~ 4 位 寄存器值 的处理器工作模式代码
msr cpsr, r0 @ 将 R0 寄存器中的值 保存到 CPSR 寄存器中
mov pc, lr @ 返回到 返回点处 继续执行后面的代码
#define pWTCON 0x7e004000 @ 定义看门狗控制寄存器 地址 ( 6410开发板 )
disable_watchdog:
ldr r0, =pWTCON @ 先将控制寄存器地址保存到通用寄存器中
mov r1, #0x0 @ 准备一个 0 值, 看门狗控制寄存器都设置为0 , 即看门狗也关闭了
str r1, [r0] @ 将 0 值 设置到 看门狗控制寄存器中
mov pc, lr @ 返回到 返回点处 继续执行后面的代码
disable_interrupt:
mvn r1,#0x0 @ 将 0x0 按位取反, 获取 全 1 的数据, 设置到 R1 寄存器中
ldr r0,=0x71200014 @ 设置第一个中断屏蔽寄存器, 先将 寄存器 地址装载到 通用寄存器 R0 中
str r1,[r0] @ 再将 全 1 的值设置到 寄存器中, 该寄存器的内存地址已经装载到了 R0 通用寄存器中
ldr r0,=0x71300014 @ 设置第二个中断屏蔽寄存器, 先将 寄存器 地址装载到 通用寄存器 R0 中
str r1,[r0] @ 再将 全 1 的值设置到 寄存器中, 该寄存器的内存地址已经装载到了 R0 通用寄存器中
mov pc, lr @ 返回到 返回点处 继续执行后面的代码
disable_mmu :
mcr p15,0,r0,c7,c7,0 @ 设置 I-Cache 和 D-Cache 失效
mrc p15,0,r0,c1,c0,0 @ 将 c1 寄存器中的值 读取到 R0 通用寄存器中
bic r0, r0, #0x00000007 @ 使用 bic 位清除指令, 将 R0 寄存器中的 第 0, 1, 2 三位 设置成0, 代表 关闭 MMU 和 D-Cache
mcr p15,0,r0,c1,c0,0 @ 将 R0 寄存器中的值写回到 C1 寄存器中
mov pc, lr @ 返回到 返回点处 继续执行后面的代码
gboot.lds 链接器脚本 代码解析 :
OUTPUT_ARCH(架构名称)
指明输出格式, 即处理器的架构, 这里是 arm 架构的, OUTPUT_ARCH(arm)
;ENTRY(入口位置)
, 在上面的 Start.S 中设置的程序入口是 _start
, 代码为 ENTRY(_start)
;.text :
设置代码段; .data :
设置数据段;.bss :
设置 BSS 段; bss_start = .;
;bss_end = .;
;. = ALIGN(4);
设置四字节对齐即可;OUTPUT_ARCH(arm) /*指明处理器结构*/
ENTRY(_start) /*指明程序入口 在 _start 标号处*/
SECTIONS {
. = 0x50008000; /*整个程序链接的起始位置, 根据开发板确定, 不同开发板地址不一致*/
. = ALIGN(4); /*对齐处理, 每段开始之前进行 4 字节对齐*/
.text : /*代码段*/
{
start.o (.text) /*start.S 转化来的代码段*/
*(.text) /*其它代码段*/
}
. = ALIGN(4); /*对齐处理, 每段开始之前进行 4 字节对齐*/
.data : /*数据段*/
{
*(.data)
}
. = ALIGN(4); /*对齐处理, 每段开始之前进行 4 字节对齐*/
bss_start = .; /*记录 bss 段起始位置*/
.bss : /*bss 段*/
{
*(.bss)
}
bss_end = .; /*记录 bss 段结束位置*/
}
makefile 文件编写 :
%.o : %.S
, 产生过程是 arm-linux-gcc -g -c $^
, 其中 ^
标识是所有的依赖文件, 在该规则下 start.S 会被变异成 start.o ; %.o : %.c
, 产生过程是 arm-linux-gcc -g -c $^
; all:
设置最终编译目标; all: start.o
表示最终目标需要依赖该文件; arm-linux-ld -Tgboot.lds -o gboot.elf $^
, 需要使用链接器脚本进行连接, ①链接工具是 arm-linux-ld 工具, ②使用 -Tgboot.lds
设置链接器脚本 是刚写的 gboot.lds 链接器脚本, ③输出文件是 gboot.elf 这是个中间文件, ④ 依赖文件是 $^
代表所有的依赖; arm-linux-objcopy -O binary gboot.elf gboot.bin
, 使用 -O binary
设置输出二进制文件, 依赖文件是 gboot.elf
, 输出的可执行二进制文件 即 结果是 gboot.bin
;all: start.o #依赖于 start.o
arm-linux-ld -Tgboot.lds -o gboot.elf $^ #使用链接器脚本, 将 start.o 转为 gboot.elf
arm-linux-objcopy -O binary gboot.elf gboot.bin #将 gboot.elf 转化为可以直接在板子上执行的 gboot.bin 文件
%.o : %.S #通用规则, 如 start.o 是由 start.S 编译来的, -c 是只编译不链接
arm-linux-gcc -g -c $^
%.o : %.c #通用规则, 如 start.o 是由 start.c 编译来的, -c 是只编译不链接
arm-linux-gcc -g -c $^
.PHONY: clean
clean: #清除编译信息
rm *.o *.elf *.bin
编译过程 :
make
; 本博客的参考文章及相关资料下载 :